0.99999……は1ではない その10at MATH
   0.99999……は1ではない その10 - 暇つぶし2ch751:現代数学の系譜 雑談
20/07/08 23:24:06.94 Lx2CGXHL.net
>>709
Karin U. Kat先生が、”A strict non-standard inequality .999... < 1”とか、いろいろと(8個の論文)書いておりますですw
読んでみたらぁ~w
はいよww(^^
(参考)
URLリンク(www.researchgate.net)
Karin U. Katz's research while affiliated with Bar Ilan University and other places
(抜粋)
What makes a theory of infinitesimals useful? A view by Klein and Fraenkel
Article
Full-text available
Feb 2018
Vladimir Kanovei
Karin U. Katz
Mikhail G. Katz
Thomas Mormann
Felix Klein and Abraham Fraenkel each formulated a criterion for a theory of infinitesimals to be successful, in terms of the feasibility of implementation of the Mean Value Theorem. We explore the evolution of the idea over the past century, and the role of Abraham Robinson's framework therein.
Cite
Download full-text
Cauchy, Infinitesimals and ghosts of departed quantifiers
Article
Full-text available
Dec 2017
Jacques Bair
Piotr Blaszczyk
Robert Ely[...]
David Sherry
Procedures relying on infinitesimals in Leibniz, Euler and Cauchy have been interpreted in both a Weierstrassian and Robinson's frameworks. The latter provides closer proxies for the procedures of the classical masters. Thus, Leibniz's distinction between assignable and inassignable numbers finds a proxy in the distinction between standard and nons...
Cite
Download full-text
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch