20/06/08 07:21:02.11 lIkO/1JX.net
メモ
URLリンク(www.kurims.kyoto-u.ac.jp)
望月 出張・講演
URLリンク(www.kurims.kyoto-u.ac.jp)
[11] 数論的Teichmuller理論入門 (京都大学理学部数学教室 2008年5月)談話会
(IUTの着想概説)
で§2.リーマン面の一意化の幾何と固有束
でP4 Koebeが出てくる
下記だったんだ(^^;
URLリンク(ja.wikipedia.org)
一意化定理
一意化定理(uniformization theorem)とは、すべての単連結リーマン面は、開円板、複素平面、リーマン球面の 3つのうちのひとつに共形同値であるという定理である。特に、単連結リーマン面は定曲率(英語版)(constant curvature)のリーマン計量を持つ。この定理は普遍被覆リーマン面を楕円型(正の曲率、正の曲がった曲率をもつ)、放物型(平坦)、双曲型(負曲率)として分類する。
歴史
フェリックス・クライン Klein (1883) と アンリ・ポアンカレ Poincare (1882) は、代数曲線(リーマン面)の一意化を予想した。Henri Poincare (1883) では、この予想を任意の多値函数へ拡張し、この条件に合う問題について議論した。一般の一意化定理の最初の厳密な証明は、 Poincare (1907) と Paul Koebe (1907a, 1907b, 1907c) で与えられた。
ポール・ケーベ(Paul Koebe)は後日、いくつかの証明と一般化を与えた。この歴史は Gray (1994) に記述されている。
分類
すべてのリーマン面はその普遍被覆の上の離散群(discrete group)の自由で固有な正則作用の商であり、この普遍被覆は次の中のひとつに正則同型(「共形同値」ということもある)である。
1.リーマン球面
2.複素平面
3.複素平面内の単位円板
つづく