分からない問題はここに書いてね460at MATH
分からない問題はここに書いてね460 - 暇つぶし2ch86:132人目の素数さん
20/05/23 01:07:28 jl5/nK5k.net
>>83
そうでないとしてさらに
|a|≦|b|≦|c| 、a+b+c>0
なる解が存在するとしてよい。
この時a+b+c≦3|c|‥‥?
ここで√(c^2+a+b+c)>|c|+2とすると
c^2+a+b+c-c^2
≧(|c|+3)^2-|c|^2
≧6|c|+9
コレは?に反するから
(c^2+a+b+c)=(|c|+2)^2, (|c|+1)^2。
∴a+b+c=4|c|+4,2|c|+1
前者の時3|c|≧4|c|+4は矛盾するから
a+b+c=2|c|+1‥‥?。
√(c^2-(a+b+c))<|c|-2とすると
c^2-(a+b+c)-c^2
≦(|c|-3)^2-|c|^2
≦-6|c|+9
∴-3|c|≦-6|c|+9
∴|a|≦|b|≦|c|≦1であるが、コレを満たす解はないから
(c^2-(a+b+c))=(|c|-2)^2, (|c|-1)^2
∴a+b+c=4|c|-4,2|c|-1
?とこの2つはいずれも矛盾する。


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch