分からない問題はここに書いてね460at MATH
分からない問題はここに書いてね460 - 暇つぶし2ch30:132人目の素数さん
20/05/20 13:21:02.80 ghUS4LP3.net
2変数関数 f(x,y)=(x^3-y^3)/(x^2+y^2) の極限 (x,y)→(0,0) で
y=mxとおいて解く方法って間違ってますよね?
具体的には、y=mxとおいて任意のmに対して
f(x,mx)=(x^3-m^3x^3)/(x^2+m^2 x^2)=((1-m^3)/(1+m^2)) x→0
なので極限値は0。という解法です。
y=mxだとy軸上の点は表せないし、原点の周りをまわりながら近づく場合とか、
どんな近づき方でも同じ値に近づくということを示せてないと思うんだけど。
マセマの「スバラシク実力がつく、、、」とかいう参考書に載ってて驚愕したんですがどうなんでしょう


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch