20/05/29 18:55:01 rGF7AKvE.net
>>194
正確に話すと非常にややこしい話ですが、
「P⇒Q」から「Pでない⇒Qでない」は導けないことが導けますね
というのも、
Aを前提にBを導ける、というのをA |- Bという風に書き、
P⇒Q |- Pでない⇒Qでない とはならないことを導きたいわけですが、
これを示すためここでは、A |- Bであることが、Aが真であるような真理値の全ての割り当てに対してBもまた真である、ということと同値である事実(命題論理の完全性定理)を利用します
どういうことか、実際にやってみますが、
P⇒Q |- Pでない⇒Qでない が成り立つことは、
Pに偽、Qに真と偽を割り当てた2パターン、およびPに真、Qに真を割り当てたパターンについて、「Pでない⇒Qでない」もまた真になることと同値です
ところが、Pに偽、Qに真を割り当てたパターンでは「Pでない⇒Qでない」は偽になります
従って「P⇒Q |- Pでない⇒Qでない」が成り立たないことが導けます