20/05/02 22:55:26 qpZJrq8I.net
>>656
>一方代数スタックでの商はGの分類スタックBGと呼ばれるものとなり
下記 分類トポスで、”G 上の前層の圏と G が作用する集合の圏 BG とは同一視される”って話みたいかな(^^;
URLリンク(ja.wikipedia.org)(%E6%95%B0%E5%AD%A6)
トポス (数学)
アレクサンドル・グロタンディークによるヴェイユ予想解決に向けた代数幾何学の変革の中で、数論的な図形(スキーム)の上で有意義なホモトピー・コホモロジー的量が定義できる細かい「位相」を考えるために導入された。
目次
1 定義
2 グロタンディーク・トポス
2.1 古典的な層の理論との対応
3 分類トポス
4 数理論理学との関わり
5 歴史
分類トポス
Gを(離散)群とする。G をただ一つの対象からなる圏と見なすとき G 上の前層の圏と G が作用する集合の圏 BG とは同一視される。
このとき位相空間X上のG-torsor と Sh(X) から BG へのトポスの射との間に自然な対応がある。 同様にして、「加群の分類トポス」とよばれる(グロタンディーク)トポス Aが存在し、(C, J)上の加群の層と Sh(C, J) から A へのトポスの射が自然に対応する。
この対応は A における「普遍的な加群の層」対象 E を考え、Sh(C, J) からAへの射fに対し E のfによる引き戻し f*Eを対応させることで与えられる。さらには環の層などほかの構造についても同様のことが成立している。
歴史
グロタンディークはスキームとトポスとを同じ年に見いだしたと『収穫とまいた種と』で回想している。実際にグロタンディーク・トポスの一般論が整備されたのはSGA IVでの彼自身による発表の中でだった。