20/05/02 11:43:14 qpZJrq8I.net
>>638
> 1.要は、こんなところで、簡単に説明できるようなことではない(確か、Taylor Dupuy 先生のYoutube Cor3.12解説ビデオが約1時間もの。それを、タイプ起こししたら大変なことになる)
まじレス補足しておくと
Cor3.12の望月証明が IUT IIIに、10ページ強ある(下記)
で、当然ながら、Cor3.12の前に Theorem 3.11.がありまして、その前にxxがありまして・・・と続くと
結局、 IUT I に戻るのでしょう。ところで、 IUT Iを読むための準備論文が、また何百ページかある
(その中には、望月氏の若いときの出世作 遠アーベルのグロタンディーク予想解決とかがあり、若いときの出世作を読むためには、ノイキルヒ-内田は知ってないといけないとか・・)
だから、ウエブサイトで、Cor3.12の証明など不可能です。そんなことできるなら、何百ページの論文不要です
なお、WoitブログでDupuy先生がやろうとしていることは、SS潰し(もっと狭くはショルツ先生の主張を潰す)です
また、Cor3.12の証明は形式的には、すでに書かれてしまっています
URLリンク(www.kurims.kyoto-u.ac.jp)
INTER-UNIVERSAL TEICHMULLER THEORY III: ¨
CANONICAL SPLITTINGS OF THE LOG-THETA-LATTICE
Shinichi Mochizuki
April 2020
(抜粋)
P173
Corollary 3.12. (Log-volume Estimates for Θ-Pilot Objects) Suppose
that we are in the situation of Theorem 3.11.
P174~186
Proof.
~
(xii) In the context of the argument of (xi), it is useful to observe the important
role played by the global realified Frobenioids that appear in the Θ×μLGP-link. That
is to say, since ultimately one is only concerned with the computation of log-volumes,
it might appear, at first glance, that it is possible to dispense with the use of
such global Frobenioids and instead work only with the various local Frobenioids,
for v ∈ V, that are directly related to the computation of log-volumes.
~
This indeterminacy has the effect of rendering
meaningless any attempt to perform a precise log-volume computation as in (xi).