20/04/28 13:47:14 RHvq6KgG.net
>>523
ああ、標数0で こんなのがあるな。読める人は読んでみて(^^
URLリンク(www.math.uni-bonn.de)
Perfectoid Spaces and their Applications Peter Scholze
Mathematics Subject Classification (2010).
1. Introduction
In algebraic geometry, one of the most important dichotomies is the one between characteristic 0 and positive characteristic p. Our intuition is formed from the study of complex manifolds, which are manifestly of characteristic 0, but in number theory, the most important questions are in positive or mixed characteristic.
Algebraic geometry gives a framework to transport intuition from characteristic 0 to positive characteristics. However, there are also several new phenomena in characteristic p, such as the presence of the Frobenius map, which acts naturally on all spaces of characteristic p.
Using the Frobenius, one can formulate the Weil conjectures, and more generally the theory of weights. This makes many results accessible over fields such as Fp((t)), which are wide open over fields of arithmetic interest such as Qp.
The theory of perfectoid spaces was initially designed as a means of transporting information available over Fp((t)) to Qp, but has since found a number of independent applications. The purpose of this report is to give an
overview of the developments in the field since perfectoid spaces were introduced in early 2011.
URLリンク(link.springer.com)
The Takagi Lectures : 30 May 2019
Singularities in mixed characteristic. The perfectoid approach
Yves Andre Japanese Journal of Mathematics volume 14, (2019)
Recently, perfectoid techniques coming from p-adic Hodge theory have allowed us to get rid of any base field;
We sketch a broad outline of this story, taking lastly a glimpse at ongoing work by L. Ma and K. Schwede, which shows how such a study could build a bridge between singularity theory in characteristic p and in characteristic 0.