Inter-universal geometry と ABC予想 (応援スレ) 44at MATH
Inter-universal geometry と ABC予想 (応援スレ) 44 - 暇つぶし2ch585:現代数学の系譜 雑談 ◆e.a0E5TtKE
20/04/28 07:47:18 JPon0M4O.net
>>502
>ちなみに、p進体の標数は0なので、標数が0だからといって有理数体の話がでてくるとは限らない

ありがとう
勉強になるわ(^^
調べると、下記 「標数 0 の体は必ず Q を含むので無限体であり、有限体は必ず正標数を持つことも確認できる」なので、”Q を含む”だね
IUTは、”混標数”と書いてあった記憶あるから、環ベースの議論か

(参考)
URLリンク(ja.wikipedia.org)
標数
(抜粋)
素体(そたい、prime field)は自分自身以外に部分体を持たない体のことである。体は整域であるから、上で見たことから F が正標数 p の体ならば F は必ず Z / p Z に同型なる素整域を含む。
F の標数が 0 の場合には、有理整数環 Z が F に含まれるが、F が体であることから有理数体 Q(に同型な体)が F に含まれる。
よって Q は標数 0 の素体である。ゆえに、素体は Q および Z / p Z (p は素数)によって(同型の違いを除いて)すべて尽くされているということができる。
また、ここから標数 0 の体は必ず Q を含むので無限体であり、有限体は必ず正標数を持つことも確認できる。


標数が素数 p である整域 R の元 x,y に対し、二項定理により (x + y)^p = x^p + y^p が成り立つため、写像 Frob: R → R, Frob(x) = x^p は環準同型となる。Frob はフロベニウス写像と呼ばれ、体論で重要な役割を果たす。

性質
ある環 R とその任意の部分環 S に対して、S の標数は R の標数に等しい。 一方、剰余環の標数は元の環の標数に等しいとは限らない。
例えば、p-進整数環 Zp は Z を部分環として含み、標数 0 であるが、その唯一の極大イデアル p Zp による剰余環は Z / p Z に同型で標数は p である。
環 R とそのイデアル I (とくに、DVRとその極大イデアル)に対し、 R と R/I の標数が等しい状況を等標数、異なる状況を混標数とよぶことがある。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch