Inter-universal geometry と ABC予想 (応援スレ) 44at MATHInter-universal geometry と ABC予想 (応援スレ) 44 - 暇つぶし2ch■コピペモード□スレを通常表示□オプションモード□このスレッドのURL■項目テキスト450:vが好きだった私は、ある時教 官写真集を見て、代数演習の助手の人の専攻の欄に「整数論」と書かれているのを見て、愕然とした記憶があ ります。一体大学という所で、未だに整数などを研究して何が楽しいのだろうか。勿論、この時の私の頭に は、高校の数 I 程度のイメージしかなかった訳です。この印象が変わったのは、3 年の前期に可換環論を習っ てからです。(この時、輪講で高木貞次の『代数的整数論』を読んでいたせいもある。) この講義において ・ 可換環は、幾何的な対象である。 ・ 従って、整数論も幾何的なものである。 という見方があることを知りました。事情に通じている人なら要するに僕が代数幾何なるものを知らなかった のだなあと分るはずです。ただ、特に数論で扱うような可換環は十分に普通の幾何的対象に近いものだという ことを強調しておきます。 さて、ここで「幾何、幾何」と叫んでいるのは、多様体 (特に複素多様体) および、ホモロジー、コホモロ ジー論のことです。余計なお喋りはこのくらいにして 1 多様体の位相空間が、その上の関数環 (或いは環の層) と結びついている様子。 2 整数環を直線と見倣す見方。 3 上の見方による御利益。 4 言い訳。 の順に話していくことにします。 つづく 次ページ最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch