20/04/12 15:21:27.60 hAg37Ryy.net
>>32
つづき
These Hodge theaters use two main symmetries of IUT: multiplicative arithmetic and additive geometric. On one hand Hodge theaters generalize such classical objects in number theory as the adeles and ideles in relation to their global elements, on the other hand they generalize certain structures appearing in the previous Hodge-Arakelov theory of Mochizuki.
The links between theaters are not compatible with ring or scheme structures and are performed outside conventional arithmetic geometry. However, they are compatible with certain group structures, and absolute Galois groups as well as certain types of topological groups play a fundamental role in IUT.
Considerations of multiradiality, a generalization of functoriality, imply that three mild indeterminacies have to be introduced.[17]
数学的意義
理論の範囲
望月の算術幾何学の前作に続く、Inter-universalタイヒミュラー理論である。
この研究は、アナベル幾何学への主要な貢献と、p-adic Teichmuller理論、Hodge-Arakelov理論、Frobenioidカテゴリの発