Inter-universal geometry と ABC予想 (応援スレ) 44at MATH
Inter-universal geometry と ABC予想 (応援スレ) 44 - 暇つぶし2ch199:ov-theoretic Comparison Theorem.で ”Note that these can be considered as a discrete analogue of the calculation of Gaussian integral is a Gaussian distribution (i.e., j → j^2) in the cartesian coordinate is a calculation in the polar coordinate ・・・” とか、望月先生の講演ネタで使っていた話の解説もあるな P358 ”Proof. Theorem follows from the definitions.(QED)” には、笑った(^^; すぐ後に、”A rough picture of the final multiradial representation is as follows:”と部分解説が続くのだけれど だったら、解説の後に、 ”Proof. Theorem follows from the definitions.(QED)”に持ってこないとねぇー ここ (P352) ”The following the Main Theorem of inter-universal Teichmuller theory: Theorem 13.12. (Multiradial Algorithms via LGP-Monoids/Frobenioids, [IUTchIII, Theorem 3.11]) ” なんだけど、例のCor 3.12に直結するところだしね Cor 3.12は P359 ”Corollary 13.13. (Log-volume Estimates for -Pilot Objects, [IUTchIII, Corollary 3.12]) We write -| log(θ)|∈ R ∪{+∞}” あと P360 ”Then we obtain -| log(q)|< -| log(θ)|” で、IUT III Cor3.12 になるけどねw(^^; (Proof.は、その直後から4ページほどある) 山下サーベイ論文は、それなりに面白いわ(^^




次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch