Inter-universal geometry と ABC予想 (応援スレ) 44at MATH
Inter-universal geometry と ABC予想 (応援スレ) 44 - 暇つぶし2ch194:現代数学の系譜 雑談 ◆e.a0E5TtKE
20/04/21 07:44:51 /78llOaT.net
>>170 訂正と追加
訂正
 >>167はすぐその下とダブりで消す

追加
"NF"について 下記P12
the abbreviations NF for "number field"
ですね(^^
URLリンク(www.kurims.kyoto-u.ac.jp)
A PROOF OF THE ABC CONJECTURE AFTER MOCHIZUKI By Go Yamashita preprint. last updated on 8/July/2019.
(注意:文字化けがあるので、必ず原文見て下さい!)
P12
Number Fields and Local Fields:
In this survey, we define a number field to be a finite extension of Q (i.e., we
exclude infinite extensions). We define a mixed characteristic (or non-Archimedean)
local field to be a finite extension of Qp for some p. We use the abbreviations NF
for "number field", MLF for "mixed characteristic local field", and CAF for "complex
Archimedean field" (i.e., a topological field isomorphic to C). For a topological field
k which is isomorphic to R or C, we write j _ jk : k ! R>=0 for the absolute value
associated to k, i.e., the unique continuous map such that the restriction of j_jk to k
determines a homomorphism k ! R>0 with respect to the multiplicative structures of
k and R>0, and jnjk = n for n ∈ Z>=0. We write π ∈ R for the mathematical constant
pi (i.e., π = 3:14159 ・ ・ ・ ).
(引用終り)

±の意味?
分からんw(^^;
下記で、
+が ”双曲的なリーマン面Xの不変被覆X~は 上半平面H”に相当する部分で
-が 下半平面に相当する部分で
±は ”+ and -”と推察します
URLリンク(www.kurims.kyoto-u.ac.jp)
望月新一の出張・講演
[11] 数論的Teichmuller理論入門 (京都大学理学部数学教室 2008年5月)
URLリンク(www.kurims.kyoto-u.ac.jp)
談話会 数論的Teichmuller理論入門
P4
双曲的なリーマン面Xの不変被覆X~は 上半平面Hに同型である(Koebe)。
(引用終り)

あと「D-Θ±ell 」(>>166)のDは、自分で頼むよ(^^


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch