20/06/11 14:16:40.49 KOAB8uG9.net
2つの整式
P(x)=X^4+ax^3+bx^2+cx+12
Q(x)=x^4+cx^3+bx^2+ax+12(ただしa≠c)
について
(1)整式P(x)とQ(x)が、1次式の共通な因数を持つ時、P(x)を因数分解せよ。
(2)整式P(x)とQ(x)が、2次式の共通な因数を持つ時、b~2-c~2をaを用いて表わせ。
という問題が古い赤チャートの総合問題にあったのですが、
解法のヒントで
(1)P(x)-Q(x)の因数が、P(x)とQ(x)の共通因数の候補者。
と書いてあったのですが、
P(x)からQ(x)を引く論拠はどこにあるのでしょうか?また、引いて出た整式は何を意味するのでしょうか?
解法のテクニックという解答しかどこを見ても書いていないので根本的な理由をお教え願えませんか?