20/06/08 20:05:38.08 4nsS10XA.net
>>702
また、f(x)が実数全体で定義された連続
関数であるので、⑥の左辺は任意の実数 x
で微分可能であるから、f(x)も実数全体で
微分可能である。
>>716
連続函数の原始函数が存在することは、これですでに証明されたのである。(←93頁)
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
また、連続函数f(x)の積分函数 ∫[a,x] f(t)dt が f(x) の一つの原始函数であることは
既に確定しているが、これは基本的だから定理として掲出する。 (←101頁)
定理35.
f(x) が積分区間内の一点において連続ならば、その点において積分函数F(x)は微
分可能で
F '(x) = f(x).
(中略)
これを 微分積分法の基本公式 という。
高木貞治:「解析概論」改訂第三版、岩波書店 (1961)
第3章 積分法 §30.p.93 §32.p.101