20/04/30 21:20:01 qOF+URFa.net
>>436
事前分布にかなり影響をうけるが、
感度特異度とも50-70%(最頻値60%標準偏差10%のβ分布),
有病率は一様分布、
検査陽性数は陽性確率が 有病率*感度+(1-有病率)*(1-特異度)の二項分布に従う
というモデルでプログラムを組むと
model
{
for(i in 1:N) {
x[i] ~ dbin(p,n[i])
}
p = prev*sen + (1-prev)*(1-spc)
PPV=sen*prev/(sen*prev+(1-prev)*(1-spc))
NPV=(1-prev)*spc/((1-prev)*spc+prev*(1-sen))
precision=(prev*sen+(1-prev)*spc)/
((prev*sen+(1-prev)*spc + (1-prev)*(1-spc)+(prev*(1-sen))))
pLR=sen/(1-spc)
nLR=(1-sen)/spc
DOR=pLR/nLR
sen ~ dbeta(sn[1],sn[2])
spc ~ dbeta(sp[1],sp[2])
prev ~ dbeta(shape1,shape2)
}
結果は、
URLリンク(i.imgur.com)
有病率の期待値は2.3%、最頻値は0.31% 少数データなので信頼区間が広い。
有病率が平均値50%の一様分布というのは現実離れした分布だとは思う。