純粋・応用数学at MATH
純粋・応用数学 - 暇つぶし2ch94:現代数学の系譜 雑談
20/04/02 10:23:29.49 XDgVHU54.net
>>68
>工学化学で修士号も取れないのが純粋数学にクビ突っ込んだ気になって歯が全然立たないケースを言うのではない。
・純粋数学の定義がない
 →純粋数学と応用数学の明確な区別なし
 →応用からの問題解決のために考えられ、純粋数学となった分野多数
・であれば、純粋数学と応用数学の明確な区別はないのだし、応用分野の人も 自分の課題に使える数学として、先端数学の知識はいるよね
・”問題解決のために考えられ 純粋数学となった分野多数”とすれば、数学側でも 数学(論文)ネタとして 関連&隣接分野の課題は、知っているべき
・一例をあげれば、1億円懸賞問題 ミレニアム(下記)
(参考)
URLリンク(ja.wikipedia.org)
ミレニアム懸賞問題(ミレニアムけんしょうもんだい、英: millennium prize problems)とは、アメリカのクレイ数学研究所によって2000年に発表された100万ドルの懸賞金がかけられている7つの問題のことである。
そのうち1つは解決済み、6つは2020年3月末の時点で未解決である。ミレニアム賞問題、ミレニアム問題とも呼ばれる。
(抜粋)
・ナビエ?ストークス方程式の解の存在と滑らかさ (Navier?Stokes Equation)
・ヤン?ミルズ方程式と質量ギャップ問題 (Yang?Mills and Mass Gap)
・P≠NP予想 (P vs NP Problem)

95:132人目の素数さん
20/04/02 13:25:31 evZ2Ok4z.net
検索で出てくるとウザいコピペだけで作成されたページをご存じない?。

御存じないというより本業のプロだろうからなあ。

96:現代数学の系譜 雑談 ◆e.a0E5TtKE
20/04/02 14:19:30 XDgVHU54.net
>>82
さあ?
知らんけどなー

ただ、以前ガロアスレを立ち上げていたときに
google検索で、結構上位にガロアスレがヒットで上げられるので便利だった
自分で書いたのだが、「あれどうったかな?」と思ったときに
google検索で結構ヒットしたね

5chって、結構google検索のランク付けが上位だと思ったね
google検索 の仕組みの詳しいことは知らんけど

なお、稼ぎたいなら、5chなんかやめて
自分でブログかツイッターで、グーグルアドセンスやるのが良いんじゃないかな?w(゜ロ゜;
ここでは、おれには一銭も入らない

URLリンク(kanemotilevel.com)
副業クエスト100
グーグルアドセンスの収入が300万円越えたので「ブログで稼ぐための20の方法」を公開します。
2020年2月5日 きぐち

URLリンク(www.google.com)
Google AdSense - ウェブサイトを収益�


97:サwww.google.com ? intl ? ja_jp ? adsense ? start Google AdSense を使用してウェブサイトを収益化しましょう。広告のサイズは自動的に最適化され、表示とクリックが促進されます。



98:現代数学の系譜 雑談 ◆e.a0E5TtKE
20/04/02 14:25:34 XDgVHU54.net
>>83 タイポ訂正

自分で書いたのだが、「あれどうったかな?」と思ったときに
 ↓
自分で書いたのだが、「あれどうだったかな?」と思ったときに

分かると思うが(^^;

99:現代数学の系譜 雑談 ◆e.a0E5TtKE
20/04/02 15:23:16 XDgVHU54.net
>>83
>google検索で、結構上位にガロアスレがヒットで上げられるので便利だった

そうそう
思い出したので書いておくと
5chのコピーサイトもあるんだわ
本来の5chとは別にね

それで、過去スレでも、5chのコピーサイトとかがヒットすることが結構あったな
いまもそうかどうか知らないが(多分ちょっと違法っぱいな)
いま専用ブラウザ使っているのだが、現在から過去スレを横断して検索する機能はないみたい
そういう機能があると便利だけれどね

そういうのは
コピーサイトには、グーグルアドセンスの収入になるかもしらんが
検索した側には、全く収入にならんのよ
当たり前だがね

100:現代数学の系譜 雑談
20/04/02 17:24:53.46 XDgVHU54.net
>>81
(例補足)
数学隣接分野で、文系だけれど 経済学 があるよね
・ちょっと有名なのが 知る人ぞ知るで、hiroyukikojima氏。東大数学科から院試で失敗して、経済学へ行った人
 URLがNGで略す  hiroyukikojima’s blog
・三菱UFJ、(東大 亀澤宏規氏)数学科出身社長就任の衝撃… 文=真壁昭夫/法政大学大学院教授 Business Journal 2020.02.11 なんてのもある(これは経営かもしらんが)
 URLリンク(biz-journal.jp)
・ブラック?ショールズ方程式は、伊藤先生の確率微分方程式論を経済の株価予測に適用して、ノーベル経済学賞(上記 亀澤宏規氏もこの仕事をしたらしい)
 URLリンク(ja.wikipedia.org)
・ナッシュ均衡のナッシュさん、アメリカ人の数学者。ゲーム理論、微分幾何学、偏微分方程式で著名な業績を残す。
 URLリンク(ja.wikipedia.org)
 1994年にゲーム理論の経済学への応用に関する貢献によりラインハルト・ゼルテン、ジョン・ハーサニと共にノーベル経済学賞を、2015年に非線形偏微分方程式論とその幾何解析への応用に関する貢献によりルイス・ニーレンバーグと共にアーベル賞を受賞した。
 微分幾何学では、リーマン多様体の研究に関して大きな功績を残す。
 半生を描いた映画『ビューティフル・マインド』は、天才数学者としての偉業と成功、及び後の統合失調症に苦しむ人生を描いた作品である。
 URLリンク(ja.wikipedia.org)
・ポール・サミュエルソン氏は、1970年のノーベル経済学賞受賞だが、ハーバード大学で数学や物理学を修めたことが、後の彼の理論的性格を方向付けたと言われる[3]。
 URLリンク(ja.wikipedia.org)
要するに、最先端の数学を、経済学に うまく使った人で、ノーベル経済学賞とか銀行の社長とか、経済学者になった人がいるってことよ
(おれは、そういう人にはなれないけれどねw(^^; )

101:現代数学の系譜 雑談 古典ガロア理論も読む
20/04/02 22:27:47.19 kD9YEDnI.net
>>31
追加
URLリンク(www.kurims.kyoto-u.ac.jp)
数理解析研究所講究録 1200 巻 2001 年 39-47
Weight-monodromy conjecture over positive
characteristic local fields
東大数理・修士課程 伊藤哲史 (Tetsus


102:hi Ito) Graduate School of Mathematical Sciences, University of Tokyo 1. INTRODUCTION 本稿ではウェイト・ モノドロミー予想について, 筆者が修士論文 [It] で得た結果を紹 介する. ウェイト・モノドロミー予想は, 局所体上の固有かつ滑らかな代数多様体の $l$ 進コホモロジーに定まるウェイト・フィルトレーションとモノドロミー. フィルトレー ションが, 次数のずれを除いて一致するという予想であり, 一般には未解決の難問であ る. [It] の主定理は, ウェイト・モノドロミー予想が正標数の局所体上で成り立つ, とい うことである. 細かな定義は後で述べることにして, まずはウェイト・モノドロミー予想の定式化を 与えよう. $K$ を局所体 (本稿では局所体とは完備離散付値体を意味するものとする), $F$ を剰余体, $l$ を $F$ の標数と異なる素数とする. $X$ を $K$ 上の固有かつ滑らかな代数多様体 とする. ウェイト・モノドロミー予想と はこれらの 2 つのフィルトレーションが次数のずれを除いて一致するという予想である. 予想 Ll (ウエイト. \yen $\text{ノ}$ ドロミー予想, [De2]). $M$ をモノドロミー. フィルトレーショ ン, $W$ をウェイト・フィルトレーションとする. このとき $M_{i}V=W_{w+i}V$ が全ての $i$ で 成り立つ. さて, 主結果を述べよう. 定理 12([It]). $K$ が正標数ならばウエイト・モノドロミー予想は正しい. 系として, モデルをとって標数 $p$ に還元することで, $K,$ $F$ が両方とも標数 0 の場合も 正しいことも分かる. 系 L3. $K$ と $F$ の標数が等しければウェイト・モノドロミー予想は正しい. つづく



103:現代数学の系譜 雑談 古典ガロア理論も読む
20/04/02 22:28:17.08 kD9YEDnI.net
>>87
つづき
したがって, ウェイト・モノドロミー予想は, $K$ が混標数の場合が残されたことに
なる. Langlands 対応などへの応用上は, 残された混標数の場合が重要であると考えら
れる. しかし, この場合は, 様々な部分的な結果はあるものの, 一般には未解決である
$([\mathrm{I}\mathrm{I}],[\mathrm{R}\mathrm{Z}],[\mathrm{S}\mathrm{G}\mathrm{A}7- \mathrm{I}])$.
なお, エタールコホモロジーの比較定理を用いることで, 系 13 から $\mathbb{C}$ 上の Hodge 理論
におけるウェイト・モノドロミー予想の対応物が得られる. すなわち, 複素単位円板上の
代数的な Hodge 構造の退化に対して, Schmid のフィルトレーション ([Sc]) と Steenbrink
のフィルトレーション ([St]) の一致を示すことができる. これはすでに Steenbrink, 斎藤
盛彦氏らによる証明があるが ([St], 510, [Sal], 425), [It] により有限体上に帰着する別
証明が与えられたことになる.
(引用終り)
以上

104:現代数学の系譜 雑談 古典ガロア理論も読む
20/04/02 22:32:48.80 kD9YEDnI.net
>>87
追加
URLリンク(gakui.dl.itc.u-tokyo.ac.jp)
学位論文要旨
伊藤,哲史
P進一意化を持つ多様体に対するウェイト・モノドロミー予想 2003.03.28
(抜粋)
 ウェイト・モノドロミー予想(weight-monodromy conjecture)とは,Deligneにより1970年の国際数学者会議において提出された予想である([D1]).これは,完備離散付値体上の固有かつ滑らかな代数多様体のl進コホモロジーに定義されたモノドロミー・フィルトレーションの重み(weight)が純であるという予想として定式化されており,
"Deligneによるモノドロミー・フィルトレーションの純性予想"とも呼ばれている.本論文の主結果は,Drinfeld上半空間によるp進一意化を持つ代数多様体に対し,ウェイト・モノドロミー予想が成り立つ,ということである.
 ウェイト・モノドロミー予想は,代数多様体が有限体上の曲線上の族から来ているときは,Deligne自身によってWeil予想の証明の中で解かれており([D2]),一般の正標数の場合はこれから従う.また,複素数体C上では,Hodge理論における対応物が単位円板上のHodge構造の退化の理論として研究され,Steenbrink,斎藤盛彦氏によって示されている([Sa


105:]). Kが混標数の場合も,曲線またはアーベル多様体の場合はGrothendieckにより([SGA7-I]),曲面の場合はRapoport-Zink,de Jongらにより示されている([RZ]).また,ある種の3次元代数多様体に対する結果もある(参考論文[1]).しかし,予想の提出から30年以上経った今日でも,3次元以上では一般には未解決である. つづく



106:現代数学の系譜 雑談 古典ガロア理論も読む
20/04/02 22:34:11.52 kD9YEDnI.net
>>89
つづく
 まず,ウェイト・モノドロミー予想について簡単に復習しよう.混標数の場合が問題なので,Kをp進体Qpの有限次拡大体とし,Fqをその剰余体とする.
lをpと異なる素数とする.XをK上の固有かつ滑らかな代数多様体とすると,l進コホモロジー〓にはKの絶対Galois群〓が連続的に作用する.完全系列によって惰性群IKを定める.IKの副l部分は,によってZl(1)と同形である(πはKの素元,(1)はTate捻り).Grothendieckのモノドロミー定理により,IKのVへの作用は準巾単である.
これよりIKの開部分群J⊂IKと,モノドロミー作用素と呼ばれる巾零写像N:V(1)→Vが存在し,各σ∈Jに対してp(σ)=exp(tl(σ)N)となることが分かる.
NからVのモノドロミー・フィルトレーションM.が次の条件をみたす唯一のフィルトレーションとして定まる.M.は〓の作用で安定なVの増大フィルトレーションであり,十分大きなkに関してM-kV=0,MkV=V,全てのkに対してN(MkV(1))⊂Mk-2Vを満たし,さらに,これから誘導される写像Nk:GrMkV(k)→GrM-kVは同形である(GrMkV:=MkV/Mk-1V).〓の〓における像が〓となるとき,σを幾何学的Frobeniusの持ち上げという.
 予想(ウェイト・モノドロミー予想).〓を幾何学的Frobeniusの持ち上げとすると,全てのkに対して,σのGrMkVへの作用の固有値は代数的整数であり,その全ての複素共役の複素絶対値はq(k+w)/2である.
URLリンク(gakui.dl.itc.u-tokyo.ac.jp)
(引用終り)
以上

107:現代数学の系譜 雑談 古典ガロア理論も読む
20/04/02 22:44:03.37 kD9YEDnI.net
>>87
追加
URLリンク(www.math.okayama-u.ac.jp)
第 50 回代数学シンポジウム・徳島大学,2005 年 8 月 2 日
GLn の大域・局所 Langlands 対応
吉田 輝義1
(京都大学大学院理学研究科 / Harvard University)
(抜粋)
3 類体論と Langlands 対応
P14
Harris-Taylor は
藤原の跡公式 ([Fu1]) および Berkovich 解析空間の理論を用いて,この方法を一般次元の特殊な
unitary 型志村多様体に拡張することで,定理 24 の(Weil-Deligne 表現の)N に関する部分を
除く整合性および定理 22 を証明した.[TY] では,さらに半安定還元の場合の重さスペクトル系
列 ([RZ], [Sai]) の各項を計算することで N に関する整合性を示した(これは,この志村多様体
に関するウェイト・モノドロミー予想の特殊な場合にあたる).その証明では,まず [HT] の結果
からこの場合の一般 Ramanujan 予想(全ての有限素点での局所成分 Πv が tempered であるこ
と)が従うことが本質的に使われる8.
謝辞 今回代数学シンポジウムで講演させていただく貴重な機会を下さったオーガナイザーの先
生方に厚く感謝します.また,本稿を詳しく読んで頂いた伊藤哲史氏(京大理)に感謝します.
(引用終り)
以上

108:現代数学の系譜 雑談 古典ガロア理論も読む
20/04/02 22:54:21.23 kD9YEDnI.net
>>87
追加
URLリンク(www4.math.sci.osaka-u.ac.jp)
2009年サマースクール
保型表現とGalois表現
?初学者のために?
吉田輝義 (よ


109:しだ・てるよし/ケンブリッジ大学数学科) 目 次 1 表現論の諸相 (1) 1 2 Q 上の L 進指標の類体論(GL1/Q の Langlands 対応) 5 3 表現論の諸相 (2) 8 4 Langlands 対応入門 13 P20 (iii) は不分岐な v では Weil 予想(Deligne の定理),一般には未解決のウェイト・モノドロミー予想の帰結であり,(iv) は (i) と同様の制限下でL 進エター ルコホモロジーの構成の帰結である. これらの予想は主に代数幾何学における重さの哲学を反映するものであるから,代数幾何学を通して証明され るものが多いが,保型表現の解析的理論がもっとも強力に定性的な結果をもたらすものとしては,有限性がある. 代数的な Π, R の導手を,すべての有限素点における Πv,WD(Rv) の導手 pmv の積 ?vpmv で定めると,これは有 限積で OF のイデアルとなり,Π と R が対応すれば互いの導手は等しい.Π の導手は Hecke 指標のモジュラス・ 保型形式のレベルにあたるものである.



110:現代数学の系譜 雑談 古典ガロア理論も読む
20/04/02 23:01:01.92 kD9YEDnI.net
以上、”ウェイト・モノドロミー予想”とは? について、調べた むずいww(^^;

111:現代数学の系譜 雑談 古典ガロア理論も読む
20/04/03 00:16:16.17 DyKRdYgC.net
URLリンク(en.wikipedia.org)
Perfectoid space
(抜粋)
In mathematics, perfectoid spaces are adic spaces of special kind, which occur in the study of problems of "mixed characteristic", such as local fields of characteristic zero which have residue fields of characteristic prime p.
A perfectoid field is a complete topological field K whose topology is induced by a nondiscrete valuation of rank 1, such that the Frobenius endomorphism Φ is surjective on K°/p where K° denotes the ring of power-bounded elements.
Perfectoid spaces may be used to (and were invented in order to) compare mixed characteristic situations with purely finite characteristic ones. Technical tools for making this precise are the tilting equivalence and the almost purity theorem. The notions were introduced in 2012 by Peter Scholze.[1]
Contents
1 Tilting equivalence
1.1 Almost purity theorem
2 See also

112:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
20/04/03 00:43:32 DyKRdYgC.net
<ウェイト・ モノドロミー予想>

1.伊藤哲史先生>>87-88
「Langlands 対応などへの応用上は, 残された混標数の場合が重要であると考えら
 れる. しかし, この場合は, 様々な部分的な結果はあるものの, 一般には未解決である」
2.Perfectoid space >>94
「In mathematics, perfectoid spaces are adic spaces of special kind, which occur in the study of problems of "mixed characteristic"」
 で、"mixed characteristic"混標数の性質の良い空間を作って
 そこで、ウェイト・ モノドロミー予想を部分解決したってことかな?(>>31
3.「ウェイト・モノドロミー予想(weight-monodromy conjecture)とは,Deligneにより1970年の国際数学者会議において提出された予想である([D1]).」
「これは,完備離散付値体上の固有かつ滑らかな代数多様体のl進コホモロジーに定義されたモノドロミー・フィルトレーションの重み(weight)が純であるという予想として定式化されており,」
「"Deligneによるモノドロミー・フィルトレーションの純性予想"とも呼ばれている.」
 か。さっぱり分からんが、下記 Kirti Joshi先生のPDFとの関連はついたかな(^^

(参考)
URLリンク(arxiv.org)
On Mochizuki’s idea of Anabelomorphy and its applications Kirti Joshi 20200305
(抜粋)
P61
26 Perfectoid algebraic geometry as an example of anabelomorphy
A detailed treatment of assertions of this section will be provided in [DJ] where we establish many results in parallel with classical anabelian geometry.
In particular this suggests that the filtered absolute Galois group of a perfectoid field of characteristic zero has non-trivial outer automorphisms which does not res


113:pect the ring structure of K. つづく



114:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
20/04/03 00:43:59 DyKRdYgC.net
>>95

つづき
This is the perfectoid analog of the fact that the absolute Galois group GK of a p-adic field K has autormorphisms which do not preserve the ring structure of K.
Now let me explain that the main theorem of [Sch12b] provides the perfectoid analog of anabelomorphy (in all dimensions).
Suppose that K is a complete perfectoid field of characteristic zero.
Let X/K be a perfectoid variety over K, which I assume to be reasonable, to avoid inane pathologies. Let π1(X/K) be its ´etale site. Let Xb/Kb be its tilt.
Then the main theorem of [Sch12b] asserts that
Theorem 26.1. The tilting functor provides an equivalence of categories π1(X/K) → π1(Xb/Kb).
If L is any untilt of Kb and Y/L is any perfectoid variety with tilt Yb/Lb =~ Xb/Kb.
Then one has π1(X/K) =~ π1(Y/L) and in particular X/K and Y/L are perfectoid anabelomorphs of each other.
In particular one says that X/K and Y/L are anabelomorphic perfectoid varieties over anabelomorphic perfectoid fields K ←→ L.
Thus one can envisage proving theorems about X/K by picking an anabelomorphic variety in the anabelomorphism class which is better adapted to the properties (of X/K) which one wishes to study.
In some sense Scholze’s proof of the weight monodromy conjecture does precisely this: Scholze replaces the original hypersurface by a (perfectoid) anabelomorphic hypersurface for which the conjecture can be established by other means.
(引用終り)
以上

115:現代数学の系譜 雑談 ◆e.a0E5TtKE
20/04/03 13:42:18 eln2Kr6c.net
メモ貼る
URLリンク(imetrics.co.jp)
iMetrics Academy Press
AI 時代の数学
(層・圏論・そしてトポスへの道のり) 2019 SPRING 2019. 6. 21
数学とは言語
Author: Sage Kusafusa 草房誠二郎
Production:iMetrics.co.jp (Japanese/ ENGLISH)
URLリンク(imetrics.co.jp)

URLリンク(imetrics.co.jp)
Math Obsession and Fun in aged
The discourse theme: - Theme Mathematics in AI era (Sheaf, Category theory, Toposes) -

URLリンク(imetrics.co.jp)
マスギークの数学ブログ集 草房誠二郎 2020

116:現代数学の系譜 雑談 古典ガロア理論も読む
20/04/04 23:06:17.76 t13u2EPI.net
数学は暗記か
スレリンク(math板:52番)
(関連)
URLリンク(todai-counseling.com)
東大医学部生の相談室
東大理系数学2020の入試問題・解答解説・難易度 2020.02.26
(抜粋)
第一問
第一問は以下のような出題でした。
URLリンク(todai-counseling.com)
a,b,c,pを実数とする。不等式
ax^2+bx+c >0
bx^2+cx+a >0
cx^2+ax+b >0
を満たす実数xの集合と、x>pを満たす
実数xの集合が一致しているとする。
(1)a,b,cはすべて0以上であることを示せ。
(2)a,b,cのうち少なくとも1個は0であることを示せ。
(3)p=0であることを示せ。
第一問の難易度分析
不等式に関する標準的な証明問題です。
「すべて」や「少なくとも1個」などの条件を示すときには、背理法を使うことが多いという点に気をつけていれば難なく完答できたでしょう。
第一問(1)を解く上での考え方・ポイント
「すべて?である」ことを示すより


117:も、「どれか1つでも?なものがあったら不都合が起こる」ことを示してあげる方が楽なことが多いです。 いわゆる背理法を利用するというわけですね。 「すべて?」を示すときは背理法の利用を考える! どれか1つでも負の数があると、2次の係数が負になっている不等式が出てきてしまいますが、このとき十分大きなxに対して絶対に不等式を満たさなくなってしまうので、x>pという集合と同じになるわけがないことが即座にわかります。 以下、解答例です。 a,b,cのうち少なくとも1つが負であると仮定する。このとき、対称性からaが負であるとして考えてよい。 aが負であることより、十分大きな実数xに対して ax^2+bx+c>0 は成立しない。よって、与えられた3つの不等式をすべて満たす実数xの集合がx>pを満たす実数xの集合と一致することはありえない。 したがって、元の仮定が誤りであり、a,b,cはすべて0以上。



118:現代数学の系譜 雑談 古典ガロア理論も読む
20/04/04 23:12:09.78 t13u2EPI.net
>>98 訂正
ax^2+bx+c >0
bx^2+cx+a >0
cx^2+ax+b >0
 ↓
ax^2+bx+c > 0
bx^2+cx+a > 0
cx^2+ax+b > 0
不等号と数字の間にスペースを入れないと、リンクのアンダーラインが入ってしまうんだな(^^;

119:現代数学の系譜 雑談 古典ガロア理論も読む
20/04/04 23:12:43.27 t13u2EPI.net
>>98 参考
URLリンク(www.zkai.co.jp)
Z会
「東大理系数学」2020年度東大入試分析
(抜粋)
大問別のポイント
 第1問  
2次不等式についての証明問題で、あまり見かけないタイプ。
小問に従って考えていけばよく、内容は難しくないが、答案が書きにくい問題といえる。
攻略のためのアドバイス
東大理系数学を攻略するには、次の3つの要素を満たす必要がある。
●要求1● 高度な思考力
特別な知識は要求されないものの、高いレベルの思考力、発想力を試す問題が多く出題されている。他の大学では、一見しただけで典型問題だとわかる出題が多いが、東大では出題の仕方がかなり工夫されており、すぐには問題の解法が浮かびにくいものが多い。初見の問題に色々な面からアプローチして、解法を決める力が求められる。確率、整数の問題で主にこの力が問われる。
●要求2● 早く正確な処理力
例年、処理量の多い問題が出題され、比較的処理量の少ないものでも、1問あたり20~30分くらいかかるものもある。特に積分の求積問題で、ハードな計算を要求するものが多い。また,やや高度な出題も見られるが、処理力重視の問題は、方針が立てやすい。数式処理力の差は直接得点差につながりやすいので、速く正確に処理できる力を充実させておきたい。
●要求3●解ける問題を見極める力
東大の数学では、例年、5割程度取れれば合格ラインといえる量とレベルの出題である。つまり、全問を解く必要はなく、解く問題の選択が合否を分ける。過去問演習などを通して、完答できる問題を見極める力を養っておこう。小問ごとに解ける問題は、もちろん解くべきである。
まずは、苦手分野があれば、遅くとも受験生の夏休みまでには克服したい。ただし、基本的なことばかりやっていては、高度な思考力を要求される東大入試には太刀打ちできなくなる。
受験生の秋以降は実戦的な演習を行い、得点力アップを図ろう。また、答案を作成する力の養成も意識したい。
共通テストが終わったあとは、東大入試に即応したZ会の問題で、最後の総仕上げをしよう。解答を作成する時間や、採点者にきちんと内容の伝わる答案作りを意識し、実戦力を完成させよう。

120:現代数学の系譜 雑談 古典ガロア理論も読む
20/04/04 23:14:54.18 t13u2EPI.net
>>100 補足
>●要求1● 高度な思考力
>特別な知識は要求されないものの、高いレベルの思考力、発想力を試す問題が多く出題されている。他の大学では、一見しただけで典型問題だとわかる出題が多いが、東大では出題の仕方がかなり工夫されており、すぐには問題の解法が浮かびにくいものが多い。初見の問題に色々な面からアプローチして、解法を決める力が求められる。確率、整数の問題で主にこの力が問われる。
暗記数学を外してくるのが、東大の入試問題です

121:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
20/04/05 19:48:22 cTzpxuVq.net
「大学への数学」2020年4月号に、服部哲弥(はっとり てつや)のインタビュー記事があったな
(これ前編で、後編は来月です)
面白かった
灘(中高)から、東大物理-数学-慶応経済教授という経歴ですね
へー(^^;

URLリンク(ts-webstore.net)
「大学への数学」2020年4月号
URLリンク(web.econ.keio.ac.jp)
服部哲弥
URLリンク(web.econ.keio.ac.jp)
服部哲弥(はっとり てつや)
現職:慶應義塾大学経済学部 教授
1958年生まれ 1985年東京大学大学院理学系研究科博士課程(物理学専攻)修了(理学博士)
専門:数理物理学,確率過程論
Erdos数:3
URLリンク(researchmap.jp)
服部 哲弥
Tetsuya Hattori

122:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
20/04/10 23:50:40 ggDNa9JL.net
メモ貼る
URLリンク(language-and-engineering.hatenablog.jp)
主に言語とシステム開発に関して
数学の「ABC予想」の証明の原論文PDFと,わかりやすい解説資料。「宇宙際タイヒミュラー理論」2014/08/04

123:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
20/04/26 17:17:31 7O7a3CML.net
>>102
「大学への数学」2020年5月号に、服部哲弥(はっとり てつや)のインタビュー記事があって
読んできた(^^;
(これ後編です)

URLリンク(ts-webstore.net)
「大学への数学」2020年5月号
発売日:2020/4/20

URLリンク(web.econ.keio.ac.jp)
服部哲弥
URLリンク(web.econ.keio.ac.jp)
服部哲弥(はっとり てつや)
現職:慶應義塾大学経済学部 教授
1958年生まれ 1985年東京大学大学院理学系研究科博士課程(物理学専攻)修了(理学博士)
専門:数理物理学,確率過程論
Erdos数:3
URLリンク(researchmap.jp)
服部 哲弥
Tetsuya Hattori

124:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
20/04/29 12:54:08 k6OCtbXM.net
メモ
URLリンク(www.saiensu.co.jp)
サイエンス社
数理科学 2017年9月号 No.651
数論と解析学
《女王》と関数が織りなす世界
ゼータ関数・L関数と解析学 鈴木正俊

これの詳しい話が下記です
URLリンク(www.math.titech.ac.jp)
ゼータ関数と微分方程式
Zeta Functions and Differential Equations
鈴木 正俊 東京工業大学理学院,2019 年 2 月

まず慣習に従って, 先の ?ζ(s) に極を消す因子 s(s - 1) を乗じたのち, s = 1/2 - iz と変数変換した函数を
Ξ(z) と書く. これは整函数かつ偶関数である. このとき, リーマン予想は Ξ(z) の零点がみな実であるという
主張に言い換えられる. 無限個の零点をもち, それらがみな実数であるような整函数の例として, 最も単純なも
のは余弦函数や正弦函数であろう. そこで, Ξ(z) がある整函数 E(z) によって余弦函数のように
Ξ(z) = 1/2(E(z) + E(-z))   (1)
と表示されたと仮定してみる. すると Ξ(z) の零点がみな実数になるような E(z) の十分条件の一つとして
『虚部が正である任意の複素数 z に対して, |E(-z)| ? |E(z)| が成り立つ』   (2)
という条件を挙げることができる. 余弦函数の場合 E(z) = exp(-iz) に対して等式 (1) と条件 (2) が成り立っ
ている. 実は等式 (1) と条件 (2) の双方を満たすような整函数 E(z) の存在はリーマン予想の必要十分条件で
あり, そのような E(z) の一つとして Ξ(z) + i Ξ′(z) がとれる [La].
この意味で, Ξ(z) は余弦函数の類似とみな�


125:ケる. この事実を踏まえると, Ξ(z) に対応する H(t) が具体的にどんなものであるかに興味が持たれるが, 正準系 の一般論から分かるのは H(t) の存在のみで, その具体形などについてはほとんど何も分からない. こういっ た理由から, 講演者は H(t) の具体的な構成法について興味をもち, 研究を進めた結果として, 与えられたゼー タ函数から明示的に定まる行列や積分作用素を用いて H(t) の表示を与える手法を [Su1, Su2] で述べた. 講演 ではその構成の概要を述べたうえ, 関連する問題などについてもお話したい. つづく



126:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
20/04/29 12:54:59 k6OCtbXM.net
>>105

つづき

参考文献
[La] Lagarias, J. C., Hilbert spaces of entire functions and Dirichlet L-functions, Frontiers in number theory, physics, and geometry. I, Springer, Berlin, (2006), 365?377.
[Su1] Suzuki, M., An inverse problem for a class of canonical systems and its applications to self-reciprocal polynomials, J. Anal. Math. 136, (2018), 273?340.
[Su2] Suzuki, M., Hamiltonians arising from L-functions in the Selberg class,
URLリンク(arxiv.org)
(引用終り)
以上

127:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
20/05/02 07:35:32 qpZJrq8I.net
<閑話休題>数学と関係ないが、貼る
URLリンク(headlines.yahoo.co.jp)
URLリンク(urbanlife.tokyo)
urban life metro 知る!TOKYO
童謡「赤い靴」の真実 女の子は異人さんに連れて行かれはしなかった
合田一道(ノンフィクション作家)2020年5月1日
(抜粋)
子どもの頃、誰もが1度は口ずさんだことのある童謡「赤い靴」。そこに歌われた女の子の数奇な運命をご存じですか? ノンフィクション作家の合田一道さんが、彼女の短い生涯をたどります。

赤い靴 はいてた 女の子 異人さんに つれられて 行っちゃった
横浜の 埠場(はとば) から 船に乗って 異人さんに つれられて 行っちゃった

 野口雨情作詞、本居長世(もとおり ながよ)作曲の童謡「赤い靴」が雑誌『小学女生』に掲載されたのは1921(大正10)年。ちょうど100年前です。

誰もが知る童謡へと歌い継がれるまでの軌跡

雨情がこの詩を書くきっかけになったのは1907 (明治40) 年、札幌の小さな新聞社「北鳴新報」の記者時代です。一軒家を借りて住まううち、新しく入社してきた鈴木志郎記者夫妻も同じ屋根の下で暮らすことになります。

 この志郎記者の妻かよから、意外な話を聞くのです。

 かよは静岡県生まれ。志郎と結婚する前に、佐野という男性との間に、きみという女の子がいたのです。でも、かよは未婚の母であり、きみは父を知らない「非嫡出子」扱いでした。かよは幼子を抱いて逃げるように北海道へ渡り、函館で過ごすうち、志郎を知ります。

つづく

128:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
20/05/02 07:35:54 qpZJrq8I.net
>>107
つづき

 開墾(かいこん)を目指す志郎に求婚されたかよは、幼いきみを連れていくのは無理と断ります。そこへ別れたはずの佐野が現れ、東京にいるアメリカ人宣教師夫妻が養女を欲しがっていると伝え、きみを手放すよう勧めます。

 かよは涙ながらにきみを宣教師夫妻に託したのでした。

 雨情は、その女の子がいまはアメリカでどんな暮らしをしているのかと思い、後に東京に移ってから雑誌に発表したのです。「赤い靴」は大評判になり、誰もが口ずさむようになりました。

今、彼女がたたずむ麻布十番、横浜、留寿都
 ところが「赤い靴」が発表されて半世紀も過ぎた1973 (昭和48)年初冬、北海道新聞の読者欄に、富良野市に住む女性から投書が寄せられたのです。

 きみの妹に当たる方からで、そこには、母かよはすでに亡(な)いが、生前、外国人宣教師に養女に出したきみのことを悔やみ、かわいそうなことをしたと話していた、と書かれていました。

 この投書に着目した北海道テレビのプロデューサーがきみの妹に会い、アメリカに飛んできみを養女にした宣教師を探し、ヒュエット夫妻の存在を突き止めました。しかし、女の子がアメリカに来たという事実はつかめないままでした。

 では、きみはどうなったのか。追跡調査の結果、宣教師夫妻に突然、転動命令が出て、病弱だったきみを残して日本を離れたこと。きみは東京都港区の麻布十番にあったメソジスト孤児院で暮らすうち、わずか9歳で亡くなっていたことなどが判明したのです。

 きみの墓は青山霊園(港区南青山)、鳥居坂教会の共同墓地にあります。十字架のついた墓の裏側に「墓誌」として、亡くなった人々の名が見えます。上段の右から11番目の「佐野きみ」がそれに当たります。佐野姓は実の父親の姓です。

教えておくれ あの子は元気で暮らしているか
 筆者(合田一道。ノンフィクション作家)は留寿都村に出掛け、きみの母思像型のオルゴールが制作され、各家庭に配られていることを知りました。

 澄みきった青空の下で、美しい女性コーラスを聞きながら、母と子がたどった数奇な、 そして苦難の道を思うのでした。
(引用終り)

129:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
20/05/05 23:49:59 dnbV/fKk.net
メモ貼る
URLリンク(www.imojp.org)
公益財団法人  数学オリンピック財団
JMO 本選成績(1990年?)
1991年 第1回日本数学オリンピック成績優秀者一覧
安田 正大 開成高等学校 高2
吉田 輝義 筑波大附属駒場中学校 中1

URL略 /hiroyukikojima.
hiroyukikojima’s blog
2011-04-04
思想としてのガロア理論
自分も寄稿している雑誌『現代思想』青土社」の4月号、特集「ガロアの思考?若き数学者の革命」が届いた。
出版社/メーカー: 青土社
発売日: 2011/03/28

あと、数論幾何の若き俊英の吉田輝義さんの「ガロア理論の基本定理」もディープな記事だ。ガロア理論の奥底にある発想をことばで論じたあと、ガロア理論のポイントになる二つの重要な定理に、現代代数学的な証明を(簡潔に)与えている。(縦組みなのが、あまりに恨めしい)。
実際、この二つの定理こそまさに、ぼくが『天才ガロアの発想力』技術評論社の中で書けなかったものであり、前述のアマゾン�


130:カ意気小僧(笑い)に絡まれる原因となったものの一部だ。 拙著は、とにかく、中学生にも読めるようにしたため、線形代数と対称群の性質をカットしたので、どうしても解説できないことが出てきてしまう。 吉田さんが与えた定理と、5次対称群が非可解であることには届かなかった。 ぼくの現在の力量では、ここのところを一般読者にわかりやすく簡潔に伝えることができそうになかったからカットしたのだ。 吉田さん自身も、これらの証明を「これは数学科の学生向けの教科書でもすっきりした説明があまりされていないように思われる」と書いているので、ああやっぱりそうなのか、と思った。 というわけで、この吉田さんの記事は、ガロア理論完全攻略を目指す人は必見だろう。



131:132人目の素数さん
20/05/08 11:46:35 WmDpVhCu.net
3月の宿題で(1)のみ正解の数弱@shukudai_sujaku

昨年度の大学への数学(大数)での勝率は、

学コンBコースが 1/1 = 100% ,

宿題が 3/10 = 30% でした!

宿題の勝率が低すぎると思うので、

これからは一層精進していきたいです!

URLリンク(twitter.com)
(deleted an unsolicited ad)

132:現代数学の系譜 雑談 ◆e.a0E5TtKE
20/05/09 13:09:08 Mxr6sv2r.net
メモ
URLリンク(ja.wikipedia.org)
シークエント計算(シークエントけいさん、英: Sequent calculus)は、一階述語論理や特殊な命題論理で広く用いられる演繹手法である。類似の手法もシークエント計算と呼ぶことがあるので、LK と呼んで区別することがある。また類似の手法も含め、総称してゲンツェン・システムとも呼ばれる。

シークエント計算とその概念全般は証明論や数理論理学において重要な意味を持つ。以下では LK について解説する。

直観的説明
上記の規則群は「論理規則」と「構造規則」に分けられる。論理規則は帰結関係 {\displaystyle \vdash }\vdash の右辺か左辺に新たな論理式を導入する。一方、構造規則はシークエントの構造を操作し、論理式の正確な形を無視する。例外として同一性の公理 (I) とカット規則 (Cut) がある。

これらの規則のほとんどは、どう証明すればよいかを示しているが、カット規則だけは異なる。カット規則 (Cut) は、論理式 A が帰結となり、同時に他の帰結の前提にもなる場合、A を除いて論理的帰結関係を結合することができることを示している。証明をボトムアップで行う場合、A を具体的に何にするかという問題が生じる(横棒の下に出現しないため)。この問題はカット除去定理で扱われる。

同一性の公理 (I) もある意味で特殊である。直観的には A ならば A であるという自明なことを意味しているにすぎない。

133:現代数学の系譜 雑談 ◆e.a0E5TtKE
20/05/09 13:13:25 Mxr6sv2r.net
メモ
URLリンク(ja.wikipedia.org)
カット除去定理
出典: フリー百科事典『ウィキペディア(Wikipedia)』
ナビゲーションに移動検索に移動
カット除去定理(カットじょきょていり、英: Cut-elimination theorem)は、シークエント計算の手法の重要性を示す、数理論理学の主要な結果のひとつである。
(数理論理学の)基本定理と呼ぶこともある。ゲルハルト・ゲンツェンが1934年に書いた記念碑的論文 "Investigations into Logical Deduction" で、古典論理と直観論理の体系をそれ�


134:シれ形式化したシークエント計算の形式的体系 LK 及び LJ において、最初に証明が与えられた。 カット除去定理は、シークエント計算の推論規則であるカット規則を用いて証明可能な式には、カット規則を用いない証明図もまた必ず存在することを示したものである。 目次 1 シークエント 2 カット規則 3 カット除去定理 カット除去定理 カット除去定理は、ある論理体系でカット規則を使って証明可能なシークエントは、この規則を使わずとも証明可能であることを示したものである。そのシークエントが定理であるとき、カット除去定理は、単に、その証明の過程で使われた補題 C をインライン化できることを示している。 すなわち、定理の証明が補題 C を使っている場合、その箇所を全て C の証明に置き換えることで、新しい完全な証明図を与えることができるということである。従って、カット規則は許容できる規則 (admissible rule) である。 シークエント計算で形式化される体系では、カット規則を使わない証明を「解析的証明; analytic proof」と呼ぶ。そのような証明は必ず長くなるというわけではないが、一般的には長くなる。George Boolos の論文 "Don't Eliminate Cut!" では、カット規則を使えば1ページで表せる証明(導出)があったとき、その解析的証明が完了するまでに宇宙の寿命より長くなる例が示されている。



135:現代数学の系譜 雑談 ◆e.a0E5TtKE
20/05/09 13:18:40 Mxr6sv2r.net
メモ
URLリンク(ja.wikipedia.org)
タブローの方法(英 tableau[1] method)とは、真理の木(truth tree)あるいは意味論的タブロー(semantic tableau)または分析タブロー(analytic tableau)と呼ばれるものを用いて、論証の妥当性や、論理式が矛盾しているかやトートロジーであるかを機械的に調べる判定手続き(decision procedure)の一種である。
ヤーッコ・ヒンティッカらのモデル集合という考え方を応用して作られ、レイモンド・スマリヤンによって広められた。

目次
1 方法
2 信頼性
3 決定可能性

URLリンク(en.wikipedia.org)
In proof theory, the semantic tableau (/ta?blo?, ?tablo?/; plural: tableaux, also called 'truth tree') is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic.

History
The method of semantic tableaux was invented by the Dutch logician Evert Willem Beth (Beth 1955) and simplified, for classical logic, by Raymond Smullyan (Smullyan 1968, 1995).
It is Smullyan's simplification, "one-sided tableaux", that is described above. Smullyan's method has been generalized to arbitrary many-valued propositional and first-order logics by Walter Carnielli (Carnielli 1987).[1]
Tableaux can be intuitively seen as sequent systems upside-down. This symmetrical relation between tableaux and sequent systems was formally established in (Carnielli 1991).[2]

136:現代数学の系譜 雑談 ◆e.a0E5TtKE
20/05/09 13:33:23 Mxr6sv2r.net
メモ
URLリンク(ja.wikipedia.org)
レイモンド・メリル・スマリヤン(Raymond Merrill Smullyan、1919年5月25日 - 2017年2月6日)はアメリカ合衆国の数学者、ピアニスト、論理学者、老荘哲学者、奇


137:術師。 ニューヨーク市のFar Rockawayに生れる。最初は奇術師をしていた。1955年にシカゴ大学から学士を得る。1959年にプリンストン大学から博士号を得る。アロンゾ・チャーチのもとで学んだ数多くの傑出した論理学者の一人。 経歴 スマリヤンは博士課程にいるときの1957年に“Journal of Symbolic Logic”に論文を発表し、ゲーデルの不完全性定理が1931年にゲーデルが発表した論文よりも初等的な形で形式系を考察できることを示した。 ゲーデルの不完全性定理に関する現代的な解釈はこの論文から始まっている。その後、スマリヤンはゲーデルの不完全性定理における魅力的な部分がタルスキの定理から必然的に導かれることを示した。 タルスキの定理は不完全性定理よりも容易に証明できて、哲学的に不完全性定理と同じような不安を与えるものである。 数理論理学において古典的な限界を与える定理に関してスマリヤンが終生寄与した成果は以下の文献で読むことができる: ・Smullyan, R M (2001) "Godel's Incompleteness Theorems" in Goble, Lou, ed., The Blackwell Guide to Philosophical Logic. Blackwell (ISBN 0-631-20693-0). スマリヤンの論理学の問題は多くは古典的なパズルを拡張したものである。



138:現代数学の系譜 雑談 ◆e.a0E5TtKE
20/05/09 13:34:18 Mxr6sv2r.net
メモ(PDFが落とせる)
URLリンク(www.researchgate.net)
Godel incompleteness theorems and the limits of their applicability. I
Article (PDF Available)?in?Russian Mathematical Surveys 65(5):857 ・ January 2011?with?346 Reads?
DOI: 10.1070/RM2010v065n05ABEH004703
Cite this publication
Lev Dmitrievich Beklemishev
25.68Russian Academy of Sciences

Abstract
This is a survey of results related to the Godel incompleteness theorems and the limits of their applicability.
The first part of the paper discusses Godel's own formulations along with modern strengthenings of the first incompleteness theorem.
Various forms and proofs of this theorem are compared. Incompleteness results related to algorithmic problems and mathematically natural examples of unprovable statements are discussed. Bibliography: 68 titles.

139:132人目の素数さん
20/05/13 10:04:13 YxiDM0Si.net
>>112
カットを除去するのは、証明の効率とか見やすさとは無関係

ざっくりいえば、
「カットのない証明ばかりなら理論は無矛盾」だから
「どんな証明もカットなしにできる」と云えれば
理論が無矛盾だといえる

ただし肝心のカット除去の手続きは元の理論の枠内でできない
(ペアノ算術のカット除去がε0の超限帰納法を必要とするのは有名だが
 より弱い算術でもカット除去に必要な順序数の超限帰納法は
 その理論で許される帰納法の範囲を超えている)
URLリンク(en.wikipedia.org)

証明論は証明の方法を研究する理論ではない

140:132人目の素数さん
20/05/13 10:10:00 YxiDM0Si.net
唐突で恐縮だが

「巨大数論」ってM.C.Escherの作品みたいなものだと思う

双曲的タイリングも研究目的で考え出されたものだが
見た目が美しいから美術作品になった

巨大数(というか構成的順序数)も本来無矛盾性証明の目的で
考え出されたものがそれ自身の面白さから興味をも�


141:スれた 今後、純粋数学の成果が、こういう形で一般人の興味を 引くことがあれば、それはそれでいいことだと思う



142:現代数学の系譜 雑談 ◆e.a0E5TtKE
20/05/13 11:25:58 uMe8boWM.net
>>116-117
どうも
コメントありがとう(^^

143:現代数学の系譜 雑談 ◆e.a0E5TtKE
20/05/14 13:19:22 +/wwAOsh.net
メモ

URLリンク(gendai.ismedia.jp)
週刊現代 20190805
東大・京大・早慶では「中国人留学生」が圧倒的に優秀という現実
教育現場が実感する「日本の衰退」

数学五輪は世界1位
「ここ4~5年、東大にいる中国人留学生が全体的に優秀になっている印象があります。かつては優秀な子もいれば、そうでない子もいて、玉石混交の状態でした。

ところが、最近は日本人の学生はもっと頑張らないと厳しいと思えるほど、優秀な中国人留学生が増えています」

そう語るのは、東京大学先端科学技術研究センター教授・西成活裕氏だ。

大国・中国の存在感は政治、経済の世界以外でも増す一方だ。7月11日からイギリスで開催された国際数学五輪でも、中国チームはアメリカとともに1位に輝き、日本は13位に沈んだ。そんな国力の衰えを最も実感しているのが、教育現場なのだ。

いま、中国人留学生が東大、京大、慶應、早稲田などの名門校に多数在籍している。そして、その多くが日本人が太刀打ちできないほど、優秀な成績を収めている。

現在、東大には約2400人の中国人留学生がいる('19年5月時点)。中国の高校を卒業した後、留学生試験を受けて学部から入る、あるいは中国国内の大学を卒業後に日本人と同じ院試を受けて、大学院から入学するなど、パターンは様々だ。

つづく

144:現代数学の系譜 雑談 ◆e.a0E5TtKE
20/05/14 13:19:46 +/wwAOsh.net
>>119

つづき

西成氏が話す。

「日本人学生とはハングリーさが違います。私の講義後、質問にやってくるのは、きまって中国人留学生。彼らは自分が理解できなかった部分や疑問に感じたところを、その場で明らかにしたいという考えを持っているように感じる。

反対に日本人学生はなかなか質問に来ない。『まあ、いいや』と済ませてしまう人が多い傾向にあると思います」

東大には学業、社会活動などで優れた成績を収めた学生を表彰する「総長賞」という制度がある。

これまで何人もの中国人留学生が受賞しており、直近では'17年度に薬学系研究科の博士課程に在籍する中国人留学生が「自然免疫受容体Toll様受容体7の構造生物学的研究」というテーマで総長賞を受賞している。

「私が会った中国人留学生で印象的だったのは、中国の大学を出て、研究員として東大にやってきた青年です。彼は何かに興味を持ち、研究を始めると、必ずどこかで区切りをつけ、論文という形にまとめるんです。

日本人学生の場合、研究を始めても、行き詰まったり、面白みがないと、すぐに諦めてしまう。必死さが違うんです。

通常、研究者は年齢と同じ本数の論文を書かなければならないとされています。たとえば、40歳であれば40本といった具合です。

しかし、彼は30代ですでに100本近くの論文を書いていました。いま彼は中国の大学に戻っていますが、30代の若さですでに教授になっています」(西成氏)
(引用終り)
以上

145:132人目の素数さん
20/05/14 13:57:31 yUsAr7Ai.net
>>119-120
世界全体に示す中国人の割合から考えると別におかしくはない



146:https://graphic-data.com/page/geography/001.html なお、10年以内にインドの人口が中国を抜くらしい といっても最終的にはアフリカが勝つんですが https://drive.media/posts/14786



147:現代数学の系譜 雑談 ◆e.a0E5TtKE
20/05/14 17:03:37 +/wwAOsh.net
>>121
コメントありがとう

>といっても最終的にはアフリカが勝つんですが

ああ、そうかも(^^

148:132人目の素数さん
20/05/15 03:26:03.61 aC/GWFBf.net
>>121
そういう反論「しか」しない、そういう反論で「済ます」、
という日本人がいかに多いかという話だと私はとらえました。

149:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
20/05/15 07:19:58 Jy/2KfWb.net
>>123
コメントありがとう
なるほどね(^^;

150:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
20/05/17 18:15:41 9UHEbX30.net
圏論の大家 William Lawvere 氏の古典的名著
集合論を圏論で書けるぞという話です。

(参考)
URLリンク(www.tac.mta.ca)
Theory and Applications of Categories

URLリンク(www.tac.mta.ca)
Reprints in Theory and Applications of Categories

URLリンク(www.tac.mta.ca)
An elementary theory of the category of sets (long version) with commentary
F. William Lawvere 1964

緒言
The elementary theory presented in this paper is intended to accomplish two purposes.
First, the theory characterizes the category of sets and mappings as an abstract category in the sense that any model for the axioms which satisfies the additional (non-elementary) axiom of completeness (in the usual sense of category theory) can be proved to be equivalent to S.
Second, the theory provides a foundation for mathematics which is quite different from the usual set theories in the sense that much of number theory, elementary analysis, and algebra can apparently be developed within it even though no relation with the usual properties of ∈ can be defined.

151:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
20/05/17 19:42:05 9UHEbX30.net
有限単純群の分類

URLリンク(www.ams.org)
Authors: Michael Aschbacher and Stephen D. Smith
Title: The classification of quasithin groups I, II
Additional book information: Vol. 111, Mathematical Surveys and Monographs, vols. 111--112, American Mathematical Society,
Providence, RI, 2004, 1221 pp.
URLリンク(www.ams.org)
BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 43, Number 1, Pages 115?121
S 0273-0979(05)01071-2
Article electronically published on July 5, 2005
The classification of quasithin groups I, II, by Michael Aschbacher and Stephen D.
Smith, Mathematical Surveys and Monographs, vols. 111?112, American Mathematical Society, Providence, RI, 2004, 1221 pp., US$228.00, ISBN 0-8218-3410-X
(Vol. 111), 0-8218-3411-8 (Vol. 112)
In 1983, Danny Gorenstein announced the completion of the Classification of the Finite Simple Groups. This announcement was somewhat premature.
The Classification of the Finite Simple Groups was at last completed with the publication in 2004 of the two monographs under review here.
These volumes, classifying the quasithin finite simple groups of even characteristic, are a major milestone
in the history of finite group theory. It is appropriate that the great classification endeavor, whose beginning may reasonably be dated to the publication of the monumental Odd Order Paper [FT] of Feit and


152:Thompson in 1963, ends with the publication of a work whose size dwarfs even that massive work.



153:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
20/05/17 20:13:57 9UHEbX30.net
googleのビューで一部読める(^^;
URLリンク(books.google.co.jp)
The Classification of Finite Simple Groups: Groups of Characteristic 2 Type 2011
著者: Michael Aschbacher、 Richard Lyons 、 Stephen D. Smith 、 Ronald Solomon

154:哀れな素人
20/05/18 08:36:02.14 caP05o8t.net
スレ主よ、最近見かけないと思ったら、ここにいたのか(笑
ところで僕のスレに質問少年、サル石、なりぷっ、酔狂というアホ軍団がいて、
ε-δ論法のε、δは、任意だから、どんな巨大な数でもいい、
という珍説を延々と主張しているのだ(笑
たとえばy=x^2という関数の、x→2のときのyの極限を論じる際に、
εは任意だから、ε=1000000と取ってもいい、と主張している(笑
で、僕が、取ってもかまわないが、そんな巨大なεを取っても意味がないし、
そんな巨大なεを取るバカはいない、と説得しても絶対に納得しない(笑
そういうわけで、ヒマがあるなら僕のスレを覗いて、
このアホどもに、そんなεを取るバカはいないと説明してやってくれ(笑

155:132人目の素数さん
20/05/18 08:45:17.46 KPvg0/0K.net
◆e.a0E5TtKEはε-δを全く理解できずに落ちこぼれたから無理だろう

156:現代数学の系譜 雑談 ◆e.a0E5TtKE
20/05/18 10:29:21 sWLLkQZr.net
>>128
哀れな素人さん、どうも
お久しぶりです

>ε-δ論法のε、δは、任意だから、どんな巨大な数でもいい、
>という珍説を延々と主張しているのだ(笑

それは、数学の視野が狭いですね
そもそも、”ε、δは、任意だから、どんな小さな数でもいい”ですよ

ε、δで、大きい数を考える意義は、全くありませんねw(^^;

157:哀れな素人
20/05/18 11:25:18 caP05o8t.net
>>130
スレ主よ、今お前のレスを僕のスレにコピペした(笑

これでアホ軍団どもも少しは納得するだろう(笑

これからも応援よろしく頼む(笑

なにしろ真性のバカが集まっているから(笑

158:132人目の素数さん
20/05/18 12:42:21 KPvg0/0K.net
文学馬鹿と工学馬鹿がお互いにトンチンカンなこといってつるんでるなw

159:132人目の素数さん
20/05/18 13:09:24 woZIY97T.net
>>130
安達さんは、εは任意だけど、微小な範囲の任意でならない、と言っています

大きいεを考える必要はない、ではなく、考えてはいけない、と言っているのです

その証拠に、y=xのときx→0のときy→0となることを示せ、と言われて

任意の正なるεにたいしてある正数δが存在して、0<|x|<δ→|y|<ε

と答えたとしても、安達さんは満足しません

安達さん「バカか(笑)xとyとしてどういう範囲のものを考えてるのかを考えないと意味がないのである(笑)」

というわけです

xとyが微小である、という条件がつかない限り、安達さんは、

>任意の正なるεにたいしてある正数δが存在して、0<|x|<δ→|y|<ε

という通常のεδの方法論は間違っていると思っているわけです

160:粋蕎 ◆C2UdlLHDRI
20/05/18 13:31:33 DRtned0W.net
{0<ε<10000}∈{0<ε<1}

数学には巨大なεを「考えてはならない理由」も「考えない方がいい理由」も無い。
「考えてはならない理由」や「考えない方がいい理由」は数学的理由ではなく数学外理工学的理由である。
むしろ巨大なεを考える事によりεの大小による評価理工学が生まれる。
ε-δ論法=εrror-δistance論法=error-distance論法=誤差-距離論法

もしεが小さくなければならないか小さい方がいい理由があったとしたら
それは物理学的化学的生物学的工学的経済的理由でεが大きく取れないだけであり
純粋数学的な理由ではなく応用数学的な『精度要求』の話であり、
もし『精度要求』するならεは(ε>0)&(ε∈R)だけではなく
(0<ε≦10)&(ε∈R)と書かれる(此処に『≦10』は安達老人が考える微小な数である)筈である。

161:現代数学の系譜 雑談 ◆e.a0E5TtKE
20/05/18 15:51:28 sWLLkQZr.net
>>130
>ε、δで、大きい数を考える意義は、全くありませんねw(^^;

<補足>
1.関数には、自然に定義域と 値域と があって、それを外れる ε、δの大きい数を考える意義は、全くありません
2.あと、例えば、ある1点x0で不連続な関数があって、不連続なx0の近傍での連続を考える場合に、不連続な部分を含める意味もまた、無いのです
3.但し、適切な(特に”適切”の定義はしませんがw)範囲で、任意と書かれていることに対し 大きな数であっても、その値を取ることは 問題ありません(任意の範囲です)

以上

162:132人目の素数さん
20/05/18 16:03:10 4yyqNng8.net
>>135
>2.あと、例えば、ある1点x0で不連続な関数があって、不連続なx0の近傍での連続を考える場合に、不連続な部分を含める意味もまた、無いのです


すごいですね
安達さんと全く同じ間違え方してます
もしかして、あなた安達さんなんですか?

163:132人目の素数さん
20/05/18 16:05:41 4yyqNng8.net
不連続な部分を含める云々は、δですよ

εではありません

任意にεを取ってきたとしても、δを上手く制限すれば、定義域も自然と必要なだけ狭めることができるのです

164:132人目の素数さん
20/05/18 19:20:16.40 4EeJBX8D.net
横から失礼するがこの話は
f(x)=x^2 f:R->Rとした時のx=0での連続性について
単にδ= εとしたのではダメで
δ=min{ε,1}と正確に書くべきだと主張しているのに過ぎないのではないないでしょうか

165:132人目の素数さん
20/05/18 19:29:07 woZIY97T.net
>>138
そんな制限いらないですよね、今回は

166:現代数学の系譜 雑談 古典ガロア理論も読む
20/05/18 21:00:04.13 8lQUmKDl.net
>>136-139
うーん(^^
1.例えば、y=1/x^2 という実関数を考えます
2.この関数は、x=0に極を持ち、x=0で不連続と考えられます(不連続なのは この1点のみです)
3.さてΔx>0で、Δxを小さくとってx=0の すぐ近くの点 x=0+Δxでの連続性を考えます
 この時、y=1/(Δx)^2です
 (Δx>0は 任意に小さく取れます。つまり、繰返しますが 不連続点はx=0のみです!)
4.ところで、y=1/(Δx)^2となるxは 2点有って、+1/Δxと-1/Δx とが考えられます!
 つまり、δだけで決めると、±√(1/δ)の2つの点の xが求まります
5.いま、証明したいことは、「点 x=0+Δxでの連続性」ですから
 x=0を含まないように 小さくεを取って、Δx>ε>0 の範囲内に収まるようにして ε-δ論法を適用すれば良いのです
6.しかし、上記4項と5項に 無頓着に
 「δだけで決められる」とか考えて「 x=0 を含む」となると
 ε-δ論法が 正常に使えないことになるのです
 (ちゃんと、問題の点 x=0+Δxの近傍のみ で考えるべし! です )

167:現代数学の系譜 雑談 古典ガロア理論も読む
20/05/18 21:02:16.27 8lQUmKDl.net
>>140 ケアレスミス訂正
4.ところで、y=1/(Δx)^2となるxは 2点有って、+1/Δxと-1/Δx とが考えられます!
  ↓
4.ところで、y=1/(Δx)^2となるxは 2点有って、+Δxと-Δx とが考えられます!
だな(^^;

168:132人目の素数さん
20/05/18 21:20:46.47 woZIY97T.net
>>140
εが小さいところだけ調べておけば、面倒な場合分け等が必要でなくなる時もあるってことですよね
しかし、それはεが大きな


169:ところを考えていけないことを意味しません εが小さいところで調べておけば、自動的にεが大きいところでも調べたことになるのです ε=10のときδ=1と求めたならば、ε=10000000000のときのδもδ=1とすれば良いのです 安達さんはこれを否定します εは微小でなければならないから 安達さんは、あくまで、εを大きく取る必要はないと言っているのではなく、大きく取ってはいけないと言っているのですよ



170:現代数学の系譜 雑談 古典ガロア理論も読む
20/05/18 23:33:24.09 8lQUmKDl.net
>>140-141
補足
下記の位相空間
"開集合を用いた定義
二つの位相空間 X, Y の間の写像
f: X → Y
が連続であるとは、任意の開集合 F ⊆ Y に対しその逆像
f^{-1}(F)={x∈ X| f(x)∈ F}
が X の開集合となるときに言う。"
を用いる方が、すっきり言えるよ
(参考)
URLリンク(ja.wikipedia.org)
連続写像
連続性は、空間の位相が同相(位相同型)であることの基礎となる概念であり、特に全単射な連続写像が同相写像であるための必要十分条件は、その逆写像もまた連続となることである。
連続でない写像あるいは函数は、不連続であると言う。
定義
位相空間の定義に複数の同値なものがあることに従って、連続写像の定義にも複数の、しかし互いに同値なものを考えることができる。
開集合を用いた定義
二つの位相空間 X, Y の間の写像
f: X → Y
が連続であるとは、任意の開集合 F ⊆ Y に対しその逆像
f^{-1}(F)={x∈ X| f(x)∈ F}
が X の開集合となるときに言う。従って、f は集合 X, Y の間の写像(であってそれらの位相の元の間の写像ではない)にも拘らず、f の連続性は用いられている X, Y それぞれの位相に依存する性質であることに注意すべきである。
つづく

171:現代数学の系譜 雑談 古典ガロア理論も読む
20/05/18 23:34:06.17 8lQUmKDl.net
>>143
つづき
閉集合を用いた定義
(開集合の補集合としての)閉集合を用いても同値な定義が得られる。即ち、二つの位相空間 X, Y の間の写像
f: X → Y
が連続であるとは、任意の閉集合 F ⊆ Y に対しその逆像
f^{-1}(F)={x∈ X| f(x)∈ F}
が X の閉集合となるときに言う。
近傍系を用いた定義
近傍を用いて位相空間の一点における写像の連続性を定義することもできる。
位相空間 X 上で定義された写像 f: X → Y が一点 x において連続であるとは、像 f(x) の任意の近傍の f による逆像が再び x の近傍となること、即ち
∀ N∈ N_f(x): f^{-1}(N)∈ M_x
が成立することを言う。
近傍系が上方集合(英語版)系であるという性質を用いれば、
∀ N∈ N_f(x),∃ M∈ M_x: M⊆ f^{-1}(V)
∀ N∈ N_f(x),∃ M∈ M_x: f(M)⊆ N
などのように言い換えることもできる。後者は逆像ではなく像を使った言い換えになっている。言葉で言えば、これはどんなに小さな近傍を選んでもそれに写される近傍が必ず見つけられることを言っているのである。
またこの定義は、基本近傍系あるいは特に開近傍のみを考えるものに単純化しても、実は同値になる。
∀ V∈ T,f(x)∈ V,∃ U∈ T,x∈ U: U⊆ f^{-1}(V)
∀ V∈ T,f(x)∈ V,∃ U∈ T,x∈ U: f(U)⊆ V
やはり後者は逆像の代わりに像を用いた言い換えである。これは、X, Y が距離空間のときには、任意の近傍を考える代わりに x および f(x) をそれぞれ中心とする開球体全体の成す近傍系を考えるというのと同じことであって、このとき、写像の連続性は距離空間の文脈における通常の ε-δ を用いた連続函数の定義と同じであることが確かめられる。
一方、一般の位相空間では近さや距離の概念を使わずに議論しなければならない。
とは言え、終域 Y がハウスドルフならば、f が一点 a において連続であるための必要十分条件を、x を a に限りなく近づけるときの f の極限が f(a) であること、と述べることができることには注意。
(引用終り)
以上

172:132人目の素数さん
20/05/18 23:42:35 woZIY97T.net
長文投下すれば私が黙ると思っているのですね

言葉をどう変えようが同じことです

任意の開集合F、からスタートしてますよねその定義でも

だからFは任意で良いのです

小さなFを考えれば、それより大きいFでは自動的に成り立つので考える必要はない
しかし、それは大きいFを考えてはいけないことを意味しない

安達さんはそこを捉え違えているのです

173:粋蕎
20/05/19 03:20:52.57 7g3VTWLw.net
>>142の�


174:セう通り「大きい数を考える必要が無い」は「考えてはいけない」ではなく ε=1万 は ε>0 に含むし、安達老人は言う「10以下は暗黙の了解」と言うが 数学では全くそんな事なくキッチリ 0<ε≦10 又は ε と書かれるし 同時に「ε≦10でなければならない」だなんてのは「精度要求」であり 数学以外の理工学でやる話



175:粋蕎
20/05/19 04:00:02.05 7g3VTWLw.net
要するに安達老人は純粋数学の内で語られる筈のε-δ論法に
「ε≦10」と謂う名の「精度要求」を「添加」して勝手に応用数学の話をしとる事になる。

176:粋蕎
20/05/19 04:25:45.27 7g3VTWLw.net
此の場合「純粋数学と応用数学の境は無くなって来とる」言う話とは縁無い事。
両方とも純粋数学と応用数学を完全に棲み分ける距離を持って境を挟んどる故。

177:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
20/05/19 07:27:34 4vAnFYcr.net
粋蕎さん、どうも
お説の通りですよ
ちなみに、哀れな素人さんとの議論は

ユークリッド幾何の有名な第五公準ですよ
現代風に言えば、SSと望月かw(^^;
どちらがどうかは、分かりませんがね(゜ロ゜;

178:哀れな素人
20/05/19 07:28:14 LoI+QO8H.net
ID:woZIY97T
これは質問少年(笑
何度も説明したのに、僕が何を言っているかさえ分っていないアホ(笑

>大きいεを考える必要はない、ではなく、考えてはいけない、と言っているのです

だから「考えてはいけない」などと言ったことは一度もない(笑
あるなら挙げてみろバカ(笑
お前ほど国語力のないバカはいない(呆

>εが小さいところで調べておけば、自動的にεが大きいところでも調べたことになるのです

だからそれは間違いだと何度も声明しただろバカ(笑
x=3で連続だからといってX=30で連続とは限らないのだ(笑
分るか? アホ少年(笑

179:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
20/05/19 07:31:08 4vAnFYcr.net
>>144
(引用開始)
近傍系が上方集合(英語版)系であるという性質を用いれば、
∀ N∈ N_f(x),∃ M∈ M_x: M⊆ f^{-1}(V)
∀ N∈ N_f(x),∃ M∈ M_x: f(M)⊆ N
などのように言い換えることもできる。後者は逆像ではなく像を使った言い換えになっている。言葉で言えば、これはどんなに小さな近傍を選んでもそれに写される近傍が必ず見つけられることを言っているのである。
(引用終り)

ここは、結構面白いかも(^^
昔、「なんで逆像を使う?」と聞かれて、うまく説明できなかった
今見ると、順像を使う方式もあるのですね
でも、逆像の方が良いみたいですが

180:哀れな素人
20/05/19 07:33:14 LoI+QO8H.net
スレ主よ、質問少年はサル石以上にしつこいから、
今後も延々と粘着して来るぞ(笑

そして、アホだから、今後も延々と
εは任意だから、どんな巨大な数でもいいです、
ε=1000000と取ってもいいです、
と主張し続けるだろう(笑

この少年はε-δ論法がどういうものか、まったく分っていないのである(笑

181:哀れな素人
20/05/19 07:43:40 LoI+QO8H.net
ちなみに粋蕎が僕が酔狂と名付けた男だ(笑
広島在住で、たしか40歳代とか書いていたように思う(笑
飲んだくれであることを自ら認めている(笑
なぜかは知らないが平日の昼間から投稿している(笑

↓粋狂のおバカ発言(笑

√2や1/3は超現実数じゃ。
小数部分が0の整数を純整数という。

182:132人目の素数さん
20/05/19 07:47:05 ApaPDEMJ.net
>>150
はいはい、安達さんは自分が言ってること理解できないのですねー


任意の正なるεを持ってきて、δ=εとする

0<|x|<δ→|x|<ε

これがε=10000000000の時に成り立たないのは何故なんでしたっけ?

183:哀れな素人
20/05/19 07:48:09 LoI+QO8H.net
もちろんサル石と、エモがなりぷっ様と呼んでいる男も、
質問少年や酔狂と同じで、

「εは任意だから、どんな巨大な数でもいい」

と考えているのである(笑

お前はこれからこれらアホ軍団に悩まされることなるぞ(笑

184:132人目の素数さん
20/05/19 07:50:00 ApaPDEMJ.net
>>150
>x=3で連続だからといってX=30で連続とは限らないのだ(笑


はい、安達さんがそのような誤解をしているだろうということは百もお見通しなんですよw

安達さん、x=3での連続を今考えてるのになぜx=30での連続性の話が出てくるのですか?
意味不明なんですけどw

εδは、ある点における連続性を調べるときに使うものなのですよ

もちろん、一様連続とか安達さんには理解できない概念もありますが、今考えたいのは各点における連続性の話ですから

連続性と一様連続の違いなんて、安達さんには百年勉強したってわかるはずがないと思います

185:哀れな素人
20/05/19 07:51:08 LoI+QO8H.net
見ろ、アホの質問少年が出て来た(笑

>ε=10000000000の時に成り立たない

成り立たない、などと一度も書いたことはないのに、
この少年はアホだから、僕がそう主張していると思っているのだ(笑

とにかくアホすぎて付き合いきれない(笑

186:132人目の素数さん
20/05/19 07:51:22 ApaPDEMJ.net
>>155

>>155
>「εは任意だから、どんな巨大な数でもいい」

>と考えているのである(笑

てことは、安達さんはどんなに巨大な数でもいいというわけじゃないと思ってるってことじゃないですか

>>150
>だから「考えてはいけない」などと言ったことは一度もない(笑

ほら、これ嘘ですよ

187:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
20/05/19 07:52:38 4vAnFYcr.net
>>152
哀れな素人さん、どうも
ガロアスレのスレ主です(^^

 >>145 ID:woZIY97T は、おサルでしょうねw(^^;

>スレ主よ、質問少年はサル石以上にしつこいから、
>今後も延々と粘着して来るぞ(笑

ええ、おサルさん、相手してやりますよw
でも、哀れな素人さんが、某スレに引き付けて頂いているので、助かっています

今後も、よろしくお願いいたします。m(_ _)m

188:132人目の素数さん
20/05/19 07:53:15 ApaPDEMJ.net
>>157
y=xのときはいいんでしたっけ?

任意の正数εに対して、δ=√εが存在して
0<|x|<δ→|x^2|<ε

x→0のときx^2→0の証明です

このときは、ε=100000000000でも良いんでしたっけ?

189:哀れな素人
20/05/19 07:53:46 LoI+QO8H.net
>>156
>x=3での連続を今考えてるのになぜx=30での連続性の話が出てくるのですか?

お前が
>εが小さいところで調べておけば、自動的にεが大きいところでも調べたことになるのです

と書いているからである(笑

バカか、お前は(笑

190:132人目の素数さん
20/05/19 07:55:27 ApaPDEMJ.net
>>161
いや、だからεはyを制限するのだと何度言えばわかるんですかね

xが制限を受けるのはδですよ

ε=10000000000000でも、δ=0.00000000001とかにしておけば、考えるべきxは3-0.00000000001~3+ 0.00000000001の超狭い範囲になりますよ

191:哀れな素人
20/05/19 07:58:28 LoI+QO8H.net
>>159
違う(笑
ID:woZIY97T が質問少年だ(笑

ですます体の、中高生のような、女のような文章を書くからすぐ分る(笑

>>160
しつこいバカ

ε=100000000000はいけないなどといつたことは一度もないのだアホ
どんな巨大な数でもいいが、そんなのは不必要で無駄だと言っているのである(笑

何度言えば分るのか、お前は(アホすぎて付き合っていられない

192:132人目の素数さん
20/05/19 08:00:07 ApaPDEMJ.net
>>163
x=3では連続だけど、x=30で連続でない場合は、ε=1000000000の場合を考えてはいけないのですよね?

ほら、嘘じゃないですか
安達さんは任意のε取れない場合があると言ってるんじゃないんですか?

193:哀れな素人
20/05/19 08:03:42 LoI+QO8H.net
>>162
お前のアホさに真に呆れる(笑

εがyを制限するのではなく、δがxが制限するのでもなく、
その逆なのだアホ(笑

だからδ=0.00000000001と取るなら、
ε=100000000000と取る必要はないと言っているのだ白痴(笑

194:132人目の素数さん
20/05/19 08:06:17 ApaPDEMJ.net
>>165
>だからδ=0.00000000001と取るなら、
>ε=100000000000と取る必要はないと言っているのだ白痴(笑

∀ε ∃δ
∀δ ∃ε

の違いがなーんにもわかってないですね

そういえば、安達さんは
∀ε∀δ
だと思ってるんでしたっけ?
前εもδも任意だみたいなこと言ってましたね

195:哀れな素人
20/05/19 08:07:07 LoI+QO8H.net
>>164
どこまでアホなんだ、お前は(笑

>ε=1000000000の場合を考えてはいけない

そんなことを僕がどこに書いた(笑
考えてもいいが、不必要で無駄だと言っているのだアホ(笑

まだ分らんのか(笑

お前の相手をすると一日が潰れてしまうからここまで(笑
アホとは付き合っていられない(笑

196:132人目の素数さん
20/05/19 08:08:51 ApaPDEMJ.net
>>167
x=3で連続、x=30で不連続の時でも、ε=1000000000ととっても良いのですね?

じゃ別にx=3で連続、x=30で不連続の例をあげる必要ないじゃないですか
なにを言いたいんですか、この例で

197:132人目の素数さん
20/05/19 08:47:54 6J5B37r3.net
>>166
>∀ε ∃δ
>∀δ ∃ε
>の違いがなーんにもわかってないですね

確かに

初心者の典型的なつまづきですね

∀ε ∃δ の場合、δはεの関数、δ(ε)
∀δ ∃ε の場合、εはδの関数 ε(δ)

ε-δ論文の場合、前者

つまり、点aについて、関数fの値域の範囲εを定めれば、
それに合わせて定義域の近傍の範囲δ(ε)が決まって
|a-x’|<δ(ε)ならば |f(a)-f(x’)|<ε
となるとき、関数fは点aで連続、と定義する

ということ

198:哀れな素人
20/05/19 11:13:14.91 LoI+QO8H.net
>>168
何度同じ質問をしているのだアホ(笑
お前が
>εが小さいところで調べておけば、自動的にεが大きいところでも調べたことになるのです
と書いているからだ(笑
x=3で連続、x=30で不連続の場合があるから、
>εが小さいところで調べておけば、自動的にεが大きいところでも調べたことになるのです
ということにはならないのだアホ(笑
分るか?(笑
国語力ゼロのアホ(笑

199:現代数学の系譜 雑談
20/05/19 11:14:09.30 a8Dbjf7f.net
>>143
補足
Q:連続写像の定義には,なぜ開集合の「逆像


200:」をつかうのですか? 取りあえず貼る(^^ http://www12.plala.or.jp/echohta/top.html 位相空間・質問箱 大田春外 http://www12.plala.or.jp/echohta/top/QA/QA013.html 読者からの質問と回答 01121 ? 01130 大田春外 (抜粋) Y.Y.さんからの質問 #01129 連続写像の定義には,なぜ開集合の「逆像」をつかうのですか? 位相空間の間の連続写像の定義に「逆像」を用いるのはなぜでしょうか. 写像による位相構造の保存が連続性の意味であると思うのですが,そうだとしたら,開写像や閉写像の定義の方が,直感的には連続の定義として受け入れやすいと感じています. 大学の講義では,距離空間間の連続写像の定義から命題として, 「写像 f: X ---> Y が連続 <=> Y の任意の開集合 O に対し,f^{-1}(O) が X の開集合」 を導き,これを一般の位相空間における連続写像の定義とする流れをとっていました. 論理展開としては理解できますが,何となく受け入れ難さを感じています. よろしくお願いします. お答えします: 連続性が何を表現しているかということを考えてみるとよいのではないでしょうか. 一般に,写像 f: X ---> Y は,空間 X を空間 Y に変形するときの点の対応を表していると考えることが出来ます. このとき「 f が連続であるとは,この変形によって X が破れない(=切れない)」ことを表現しています。 このことは 『はじめよう位相空間』に詳しく説明しました. 一方,位相空間は,開集合が増加すると離散的な状態になり,開集合が減少すると密着的な状態になるという性質があります. したがって,写像 f: X ---> Y が連続になる(すなわち,X が破れない,離散的にならない)ためには,あくまで大ざっぱに言えばですが,f によって開集合が増えないことが必要です. つづく



201:哀れな素人
20/05/19 11:14:14.08 LoI+QO8H.net
お前にもう一度質問しておく(笑
ε-δ論法で、関数y=x^2の、x→2のときの極限を論じる際に、
お前はどのようなx、yの範囲を考えているのか(笑
これに答えてみよ(笑
そうすればε=1000000と取ることがいかにばかげているか分る(笑
お前はこういうことを考えていないから、
ε=1000000と取ることのばかばかしさが分らないのだ(笑
[cos x]の件に関しては答えなくていい(笑

202:現代数学の系譜 雑談
20/05/19 11:14:40.87 a8Dbjf7f.net
>>171
つづき
開集合の逆像による連続性の定義は,大ざっぱに言えば,Y の開集合が X の開集合になると言うことですので,f によって開集合が増えないことを表しています.
このことは,集合 X に2つの位相構造 T_1 と T_2 を考え, 写像
f: (X, T_1) ---> (X, T_2)
を恒等写像とすれば,一層はっきりすると思います.このとき,開集合の逆像による f の連続性の定義は,T_1 ⊇ T_2 であることと同値です. 以上が,連続性の定義に,開集合の「逆像」を用いる理由です.
Y.Y.さんと同じ疑問を持つ人は他にもいると見えて,D. J. Vellman という人がトポロジーの講義をしていたら,聴講していた同僚の先生から「像によって写像の連続性を定義することを出来ないか」という質問を受けたと,数学の雑誌に書いています.彼は1つの答えを見つけましたが,そのことも 『はじめよう位相空間』の最後の章で触れておきました.
URLリンク(www12.plala.or.jp)
はじめよう位相空間
大田春外著 
日本評論社
本書は2000年3月まで『数学セミナー』誌に同じ表題で連載した原稿を加筆,修正したものです。本書の演習問題のいくつかは,その際の読者からの質問をもとにして作られています。読者からの有意義な質問と激励にあらためて感謝いたします。
URLリンク(researchmap.jp)
大田 春外
オオタ ハルト (Haruto Ohta)
以上

203:哀れな素人
20/05/19 11:20:09.70 LoI+QO8H.net
>>169
そんなことは誰だって分っている(笑
問題は、この質問少年その他のアホが、
εは任意だからどんな巨大な数でもいい、と考えていることなのだ(笑
たとえばε-δ論法で、関数y=x^2の、x→2のときの極限を論じる際に、
このバカどもは、εは任意だからε=1000000と取ってもいい、



204:主張しているのだ(笑 だから、それがいかにアホなことかを教えてやろうと思って、 >>172のような質問を出しているのである(笑 ところがこのバカどもは答えないのだ(笑 質問の意味が分らないらしい(笑 つまりεδ論法が根本的に分っていないということだ(笑



205:132人目の素数さん
20/05/19 11:37:22.46 ApaPDEMJ.net
>>170
だから、それってεが小さいときはいいけど、大きくなったらダメってことじゃないですか
x=3で連続でx=30で不連続なときは、εが巨大だとダメなんですよね?

>>172
ようやくなに言いたいかわかりました
だから、それも巨大なεを禁止する理由にはならないですよね
εの値によって場合分けしとけばいいだけの話ですよ

206:132人目の素数さん
20/05/19 11:53:51 6J5B37r3.net
>>174
>εは任意だからどんな巨大な数でもいい

なんか不都合なことある?ないよね?

なんか「開集合の逆像が…」とかいってる人もいるけど

距離がなくなっただけのことで、いくらでも大きい開集合がとれる点で同じ

なにがいいたいのか全然わからないな

207:現代数学の系譜 雑談 ◆e.a0E5TtKE
20/05/19 11:54:40 a8Dbjf7f.net
>>171 追加

こちらが分かり易いかも(^^
URLリンク(blog.livedoor.jp)
龍孫江の数学日誌
連結性、連続性及び位相について
(抜粋)
連結性, 連続性および位相について (その5)
2018年08月09日

 前回は「連続性」にまつわる 3 つの定義をおさらいし, 点列連続性の定義から, 写像の連続性を
限りなく近付く点同士の像はまた限りなく近付くような写像と意味づけました.

 この直観的な意味を知ったうえで, まずは ε-δ 論法の定義を見返しましょう.
ε-δ 論法の主たる眼目は「点 x の δ 近傍の像が f(x) の ε 近傍に包まれるようにできる」ですから,
これもまた「x に "近い" 点を f(x)
に "近い" 点に写す」というイメージを定式化したものだと言えそうです.
 しかし, 単に「δ 近傍の像が ε 近傍に包まれる」だけで
ε や δ に何の制約もない状況では, これは何がいいたいのか判りません。きわめて小さい正数
δ>0 をとっているのに, ε がなかなか小さくできないようであれば,
「x に "近い" 点を f(x)
に "近い" 点に写す」という看板に偽りありということになります.
 そこで現れるのが, δ (と ε) に与えられた関係「いかなる (微少な) 正数 ε
に対しても, 然るべき (微少な) 正数 δ
によって云々」です. この文言によって, われわれが漠然と述べてきた標語「"近い" 点を "近い" 点に写す」において, 値域の "近さ" の関係こそが主であり, 定義域の "近さ" は値域のそれに従するものでしかないことが明らかにされるのです.
まず ε によって, 値域における像 f(x)
の "近さの基準" が設定されます. ここに包まれないものは「近くないと見なすぞ」というわけです. この近さの基準をふまえて
x の "近さの基準" δ を設ければ, それは
ε によって大きくも小さくもなるだろうけれど, 少なくとも像の "近く"
δ 近傍の像は総て f(x)
の "近く" に写っていると判ります. このように解き明かしていくと, いよいよ当初の疑問であった
連続性はなぜ逆像によって定義されるのか
に手が掛かります.

つづく

208:現代数学の系譜 雑談 ◆e.a0E5TtKE
20/05/19 11:55:07 a8Dbjf7f.net
>>177
つづき

例. 2
点集合 {x,y}
に離散位相を定めたものを X, 密着位相を入れたものを Y
とせよ.
f:X→Y を底集合の恒等写像とすると,
f は連続かつ全単射だが
逆写像
g*f-1
は連続でない, 特に
f は同相ではない.

 同じ集合に強弱の異なる位相を入れているのですから同相 (位相構造の同型) であるはずはなく,
そもそもの集合の濃度も小さく, つまりは容易な例なのですが


209:, この例こそは「連続/不連続とは何か」をもっとも端的な形で示しています. ほとんど明らかながら, 一通り証明しましょう. 密着空間からの写像 g はどうでしょうか. このとき, 定義域の 2 点で "とても近い" にも拘わらず, 写像で写してみると "近い" とは言いきれない組が存在しており, この写像が「近い点を近い点に写す」という標語に適するとは考えられません.  では「近い点を近い点に写す」という標語を充たす写像を求めるにはどうすればよいのでしょう. この標語を精確に表現するならば, ある点の像 f(x) の近傍を考える場合に, x の (それなりの) 近傍がその近傍中に写されるような写像こそを連続写像と定めたいのです. このような写像を求めるには, ε-δ 論法の時と同様に, まず値域での関係, すなわち「2 点の像は "近い" のか」を最初に問わねばなりません. そのうえで, それらを引き戻すことで「定義域内では近いのに, 写すとそれほど近いとは言えない」ような点が存在するかを論じることができます.  これを位相構造, すなわち開集合だけで表現しようとしたものが「開集合の逆像はまた開集合である」という連続の定義に他ならないのです.  最後までご覧いただきありがとうございました. 参考になりましたら, こちらもポチッと. (付録) 連結性, 連続性および位相について (その2) 2018年08月03日 この位相空間 X を R の素スペクトルといい, Spec R と表す. また, このように定義される位相をザリスキ位相という. (引用終り) 以上



210:現代数学の系譜 雑談 ◆e.a0E5TtKE
20/05/19 11:57:37 a8Dbjf7f.net
>>178
(引用開始)
例. 2
点集合 {x,y}
に離散位相を定めたものを X, 密着位相を入れたものを Y
とせよ.
f:X→Y を底集合の恒等写像とすると,
f は連続かつ全単射だが
逆写像
g*f-1
は連続でない, 特に
f は同相ではない.
(引用終り)

この例いいね
”点集合 {x,y}
に離散位相を定めたものを X, 密着位相を入れたものを Y”
なるほど
違う位相を入れたときに、逆像を使う方が扱い易いのか(^^;

211:哀れな素人
20/05/19 12:49:37.13 LoI+QO8H.net
>>175
分らないアホだな(笑
大きくなったらダメとも、εが巨大だとダメとも言っていない(笑
巨大なεを禁止する、とも言っていない(笑
とにかく国語力が壊滅的にダメだ、お前は(笑
何でお前はそんなにアホなのか(笑
>>176
お前もか(笑
不都合なことがあるなどとは一言も言っていない(笑
不必要で無駄だと言っているのである(笑
何でy=x^2の、x→2のときの極限を論じる際に、
ε=1000000と取る必要があるのか(笑
昼はここまで(笑

212:132人目の素数さん
20/05/19 12:56:56.90 ApaPDEMJ.net
>>180
εの値によって場合分けして、各場合ごとにδを選べば良いだけですよね
結局なにが言いたいのかさっぱりわかりません

213:粋蕎 ◆C2UdlLHDRI
20/05/19 15:13:29 7g3VTWLw.net
ま~た極限と連続の定義を混ぜて解釈し始めよったか

214:132人目の素数さん
20/05/19 22:44:28 hkrdHMen.net
国文科の爺さんが一番国語力が無いね

215:132人目の素数さん
20/05/19 23:00:23 zGnRKvHU.net
>>183
数学力がこのスレでびりっけつは断然コピペ工学部だろ。

216:132人目の素数さん
20/05/20 02:25:00.54 oF+A5ee1.net
>>167
>どこまでアホなんだ、お前は(笑
>>ε=1000000000の場合を考えてはいけない
>そんなことを僕がどこに書いた(笑
>考えてもいいが、不必要で無駄だと言っているのだアホ(笑
では必要で無駄じゃないεの値を具体的に答えて下さい

217:哀れな素人
20/05/20 08:10:52 ncHJGaZr.net
>>185
だからそれを教えてやろうと思って>>172の質問を出しているのである(笑

答えは教えない(笑

自分で考えよ(笑

218:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
20/05/20 08:13:25 y6TLK5vJ.net
>>177 補足
(引用開始)
まず ε によって, 値域における像 f(x)
の "近さの基準" が設定されます. ここに包まれないものは「近くないと見なすぞ」というわけです. この近さの基準をふまえて
x の "近さの基準" δ を設ければ, それは
ε によって大きくも小さくもなるだろうけれど, 少なくとも像の "近く"
δ 近傍の像は総て f(x)
の "近く" に写っていると判ります. このように解き明かしていくと, いよいよ当初の疑問であった
連続性はなぜ逆像によって定義されるのか
に手が掛かります.
(引用終り)

”連続性はなぜ逆像によって定義されるのか”?
さらに補足すれば
<簡単に一変数実関数で考えると>
1.”連続”は、値域 像 f(x) つまり Y側の事情で決まっています
2.下記の「跳躍不連続性」の例で考えれば
3.「Y側で、開集合の部分を探す。その逆像が、X側で開集合になっていることを確認する」
 それが、ごく自然な連続であることの確認手順であり、また、連続の定義になる!

 そう理解するのが、分り易いと思います!!(^^

(参考)
URLリンク(ja.wikipedia.org)


219:%86%E9%A1%9E 不連続性の分類 (抜粋) 例 2: 跳躍不連続性 https://upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Discontinuity_jump.eps.png/220px-Discontinuity_jump.eps.png 点 x0 = 1 は跳躍不連続点である。 (引用終り) 以上



220:哀れな素人
20/05/20 08:20:51 ncHJGaZr.net
εδ論法とは、εとδをどんどん小さくするとどうなるか、
あるいは、εとδをいくらでも小さく取れる、という論法なのである(笑

だから小さく取らないと意味がないのである(笑
分るか?(笑

だからどんな動画や教科書でも小さなεδを取って説明しているはずだ(笑
任意だからどんな巨大な数でもいい、
などと言っているのはお前らのようなバカしかいないのだ(笑

今朝はここまで(笑

221:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
20/05/20 08:23:39 y6TLK5vJ.net
>>187 補足の補足
> 3.「Y側で、開集合の部分を探す。その逆像が、X側で開集合になっていることを確認する」
> それが、ごく自然な連続であることの確認手順であり、また、連続の定義になる!

一変数実関数の場合は
「Y側で、開集合の部分を探すと、必ず その逆像が X側で開集合になっています」
ですので、 「Y側で、開集合の部分を探す」だけで、関数の連続部分の調査が終了します
このことからも、”連続性はなぜ逆像によって定義されるのか”は あきらかですね(^^;

222:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
20/05/20 08:28:44 y6TLK5vJ.net
>>188
哀れな素人さん、どうも(^^

(引用開始)
εδ論法とは、εとδをどんどん小さくするとどうなるか、
あるいは、εとδをいくらでも小さく取れる、という論法なのである(笑
だから小さく取らないと意味がないのである(笑
(引用終り)

同意です
”開集合”を考えると明かですね
”開集合”の範囲内に εが収まるように δを取らないと意味がない
大きい εや δを考える意味がない
”位相”の教養が不足していますね(^^;

223:132人目の素数さん
20/05/20 08:47:44 oF+A5ee1.net
>>186
だから
∀ε>0 に対し 0<|x-2|<√(ε+4)-2 ⇒ |y-4|<ε だから lim[x→2]y=4
と答えてるだろがw おまえ字読めないの?

さあ早く>>185に答えろ また逃げる気か?

224:132人目の素数さん
20/05/20 12:05:46 rkCXtjJm.net
>>190
すみません、開集合だとしても、任意の開集合を考えますよね?

小さい開集合も大きい開集合も定義では全て調べる必要があるのですよ

しかし、小さい開集合だけ調べておけば、大きい開集合で成り立つのは明らかだということなのです

225:現代数学の系譜 雑談 ◆e.a0E5TtKE
20/05/20 16:45:00 vYwp2FSf.net
>>192
>すみません、開集合だとしても、任意の開集合を考えますよね?
>小さい開集合も大きい開集合も定義では全て調べる必要があるのですよ
>しかし、小さい開集合だけ調べておけば、大きい開集合で成り立つのは明らかだということなのです

どうも
コメントありがとう

ですが、話が数学なので、はっきり申し上げるが
「小さい開集合だけ調べておけば、大きい開集合で成り立つのは明らか」は不成立でしょうね

例えば、下記の「関数の連続性と一様連続性」ご参照
さて、ある開区間 I=(x1,x2) ∈ Xで、その区間内に(発散する)極 又は 跳躍不連続点(>>187) x0 (x1<x0<x2)があったとします
なので、開区間 I 全体では、連続ではない!
だから 二つの開区間(x1,x0) と (x0,x2) とに分けて、考えればいいけど(つまりは、δ、εは、ある限界以上は大きくできない)

それで、 ”連続”なる 二つの開区間(x1,x0) と (x0,x2) に分けるといいけど
理論的には、「連続の定義」の中で、 「”連続”なる 二つの開区間(x1,x0) と (x0,x2) に分ければ」とか言うと
それは、数学的にはまずいよね (つまり 「連続の定義」を規定する中で、”連続”が先験的に分かっているという理屈になるからね)

だから、「δ、εは 適当に小さく取れて」で
一貫して説明しないとまずいですよね

(参考)
URLリンク(mathtrain.jp)
高校数学の美しい物語
関数の連続性と一様連続性 最終更新:2019/06/05
(抜粋)
関数の連続性のイメージ
いきなり厳密な定義を書くとひるんでしますので,まずはイメージから。

関数が連続であるとは,直感的には「関数がつながっている,ちぎれていない」という意味です。

ここまで理解できれば高校範囲では十分です。以下は大学内容です。

連続関数の厳密な定義は冒頭の定義を ε-δ を使って書けばよいだけです。(ε-δ を用いた極限の定義ははさみうちの原理の証明を参照してください。)

連続性の定義:
考えている区間内の任意の実数 a と,任意の正の実数 ε に対して,ある δ が存在して「|x-a|<δ なら |f(x)-f(a)|<ε」が成立する。
(引用終り)

226:132人目の素数さん
20/05/20 17:29:58 rkCXtjJm.net
>>193
いやだから、εに相当する行った先の開集合は任意にとりますよね


227:ってことですよ



228:粋蕎 ◆C2UdlLHDRI
20/05/20 19:57:09 N5dEyDd3.net
( ・A・)

( ゚д゚)

(  Д )  ゚  ゚

(  Д )    ......._。......_。 コロコロコロ…

安達老人に任せたら次世代がバカになる…

            スポポポポポポーン!!!
      。     。
        。  。 。 。 ゚
       。  。゚。゜。 ゚。 。
      /  // / /
     ( Д ) Д)Д))

            スパパパパパパーン!!!!!!

         + ,,  *    +
   " +※" + ∴  * ※ *
    *  * +※ ゙* ※ * +
   +  "※ ∴ * + *  ∴ +
      * ※"+* ∵ ※ *"
     ( Д ) Д)Д))

229:132人目の素数さん
20/05/20 21:20:16.46 oF+A5ee1.net
分るか爺さん>>185に答えられずまた逃亡w
この爺さん答えに困ると決まって逃亡するからなあ
国文科出身者ってこんなんばっかなの? この爺さんが異常なの?

230:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
20/05/20 21:31:14 y6TLK5vJ.net
>>193
お答えします

1.下記の 例 3: 真性不連続の図と式を見て下さい
2.この図で、5/(x-1)=π/6 (つまり x=1+30/π)とすると f(x)=1/2です
3.で、εを小さく 例えば ε=0.1 とすれば、Yの側で 1/2±0.1 で、真性不連続点を含まない範囲に取れます。
4.しかし、ε=2として、1/2±2の範囲を考えると、真性不連続点を含むことになります。それは、数学的には面白くない状況であり、あまり意味がない
5.たしかに、仰るように ”連続性の定義のε-δ に反しているわけではない”ですね(多分、厳密には(小さいεのδの値を、大きいεに適用すれば良い?))。
6.だが、明らかに 数学的に重要なのは、「εをいくらでも小さく取れる」であり、力点は「εの小さい方」にありますよね (^^;
 (それに、εが大きすぎると、ε-δ法に対する 位相空間の開集合の逆像を使う方法 との関係も見にくいし)

(参考)
(>>187より)
URLリンク(ja.wikipedia.org)
不連続性の分類
(抜粋)
例 3: 真性不連続性
URLリンク(upload.wikimedia.org)
3. 函数
f(x)
= sin(5/(x-1)) for x<1
= 0 for x=1
= 0.1/(x-1) for x>1
を考えれば、点 x0 = 1 は真性不連続点である。真性不連続点であるためには、極限のどちらか一方が存在しないか無限大であればよい。
なお、この例の関数を複素数変数に拡張しても、その不連続性は真性不連続性である。

(>>193より)
URLリンク(mathtrain.jp)
高校数学の美しい物語
関数の連続性と一様連続性 最終更新:2019/06/05
(抜粋)
連続性の定義:
考えている区間内の任意の実数 a と,任意の正の実数 ε に対して,ある δ が存在して「|x-a|<δ なら |f(x)-f(a)|<ε」が成立する。
(引用終り)

231:哀れな素人
20/05/20 22:18:30 ncHJGaZr.net
>>191
何度言えば分るのかアホ(笑

お前の答えは>>172に対する答えではない(笑
僕はεやδのことを質問しているのではない(笑
どんな範囲のx、yを考えているのか、と質問しているのである(笑
分るか?(笑

お前が答えた式のx、yとしてお前は具体的に、
どんな範囲のx、yを考えているのか、と質問しているのだ(笑
分るか?(笑

何でお前らはこんな単純な質問の意味が理解できないのか(笑
お前らは本当に真性のアホである(笑

それから僕はいつも2chに張り付いているわけではない(笑
午後からは一度も見ないこともしばしばあるのだ(笑
お前らのようなアホの相手をするのは時間の無駄だから(笑

とにかく「任意だからどんな巨大な数でもいい」
などと考えているのはお前らアホ軍団四人組だけである(笑

今夜もここまで(笑


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch