20/03/31 10:46:04.44 YIE+6BeO.net
>>46
>準超実数体、超実数体などを含む)すべての順序体をその部分体として実現できるという意味で普遍的な順序体となる[1]。
面白いね
(参考)
URLリンク(ja.wikipedia.org)
抽象代数学における準超実数[要出典](じゅんちょうじっすう、 英: super-real number)は実数を拡張する数のクラスで、Dales & Woodin (1996) によって超実数を一般化するものとして導入され、主に超準解析・モデル理論・バナッハ環論において興味がもたれる。準超実数全体の成す体は、それ自身が超現実数体の部分体を成す。
目次
1 厳密な定義
2 注
3 参考文献
4 関連文献
厳密な定義
「超実数#超実体」も参照
X はチホノフ空間(英語版)(T3?-空間とも)とし、C(X) で X 上定義される実数値連続函数全体の成す線型環を表す。C(X) の素イデアル P に対し、剰余線型環 A := C(X)/P は、定義により環として整域を成す実線型環で、全順序付けられていると考えることができる。
A の商体 F が準超実体 (super-real field) であるとは、F が真に実数体 ? を含む?ゆえに F は ? に順序同型 (order isomorphic) でない?ときに言う。
素イデアル P が極大イデアルならば、F は超実体?「超実数」全体の成す体?となる(ロビンソンの超実数の体はその非常に特別な場合である)。