20/03/29 16:51:43 PhmwLbdr.net
>>32
つづき
パーフェクトイド空間の応用
パーフェクトイド空間の理論は非常に有用で、Scholzeはパーフェクトイド空間を導入した論文(博士学位論文)で、長年未解決だったウェイト・モノドロミー予想を(部分的に)解決しています。
また、数論幾何の主要な研究対象で、種々のコホモロジーの比較を研究する(整)p進Hodge理論と呼ばれるの分野でも目覚ましい応用が見出されています。
当ブログのこちらの記事でも紹介したコホモロジーの統一(モチーフの理論)においても、
URLリンク(bluexlab.tokyo)
パーフェクトイド空間の理論を発展させたプリズム理論(Prismatic cohomology)が生まれるなど、現代数学の最先端を担う理論として注目を浴びています。
パーフェクトイド空間の勉強をしたい方への参考文献
その他論文等
パーフェクトイド空間の理論についてはまだまだ、テキストが少ないのが現状なので直接論文を読んで勉強することが不可欠です。以下ではパーフェクトイド空間について勉強したい人に向けておすすめの論文、読み物を列挙します。
(引用終り)
以上