20/05/19 11:14:40.87 a8Dbjf7f.net
>>171
つづき
開集合の逆像による連続性の定義は,大ざっぱに言えば,Y の開集合が X の開集合になると言うことですので,f によって開集合が増えないことを表しています.
このことは,集合 X に2つの位相構造 T_1 と T_2 を考え, 写像
f: (X, T_1) ---> (X, T_2)
を恒等写像とすれば,一層はっきりすると思います.このとき,開集合の逆像による f の連続性の定義は,T_1 ⊇ T_2 であることと同値です. 以上が,連続性の定義に,開集合の「逆像」を用いる理由です.
Y.Y.さんと同じ疑問を持つ人は他にもいると見えて,D. J. Vellman という人がトポロジーの講義をしていたら,聴講していた同僚の先生から「像によって写像の連続性を定義することを出来ないか」という質問を受けたと,数学の雑誌に書いています.彼は1つの答えを見つけましたが,そのことも 『はじめよう位相空間』の最後の章で触れておきました.
URLリンク(www12.plala.or.jp)
はじめよう位相空間
大田春外著
日本評論社
本書は2000年3月まで『数学セミナー』誌に同じ表題で連載した原稿を加筆,修正したものです。本書の演習問題のいくつかは,その際の読者からの質問をもとにして作られています。読者からの有意義な質問と激励にあらためて感謝いたします。
URLリンク(researchmap.jp)
大田 春外
オオタ ハルト (Haruto Ohta)
以上