純粋・応用数学at MATH
純粋・応用数学 - 暇つぶし2ch170:現代数学の系譜 雑談 古典ガロア理論も読む
20/05/18 23:33:24.09 8lQUmKDl.net
>>140-141
補足
下記の位相空間
"開集合を用いた定義
二つの位相空間 X, Y の間の写像
f: X → Y
が連続であるとは、任意の開集合 F ⊆ Y に対しその逆像
f^{-1}(F)={x∈ X| f(x)∈ F}
が X の開集合となるときに言う。"
を用いる方が、すっきり言えるよ
(参考)
URLリンク(ja.wikipedia.org)
連続写像
連続性は、空間の位相が同相(位相同型)であることの基礎となる概念であり、特に全単射な連続写像が同相写像であるための必要十分条件は、その逆写像もまた連続となることである。
連続でない写像あるいは函数は、不連続であると言う。
定義
位相空間の定義に複数の同値なものがあることに従って、連続写像の定義にも複数の、しかし互いに同値なものを考えることができる。
開集合を用いた定義
二つの位相空間 X, Y の間の写像
f: X → Y
が連続であるとは、任意の開集合 F ⊆ Y に対しその逆像
f^{-1}(F)={x∈ X| f(x)∈ F}
が X の開集合となるときに言う。従って、f は集合 X, Y の間の写像(であってそれらの位相の元の間の写像ではない)にも拘らず、f の連続性は用いられている X, Y それぞれの位相に依存する性質であることに注意すべきである。
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch