純粋・応用数学at MATH
純粋・応用数学 - 暇つぶし2ch102:hi Ito) Graduate School of Mathematical Sciences, University of Tokyo 1. INTRODUCTION 本稿ではウェイト・ モノドロミー予想について, 筆者が修士論文 [It] で得た結果を紹 介する. ウェイト・モノドロミー予想は, 局所体上の固有かつ滑らかな代数多様体の $l$ 進コホモロジーに定まるウェイト・フィルトレーションとモノドロミー. フィルトレー ションが, 次数のずれを除いて一致するという予想であり, 一般には未解決の難問であ る. [It] の主定理は, ウェイト・モノドロミー予想が正標数の局所体上で成り立つ, とい うことである. 細かな定義は後で述べることにして, まずはウェイト・モノドロミー予想の定式化を 与えよう. $K$ を局所体 (本稿では局所体とは完備離散付値体を意味するものとする), $F$ を剰余体, $l$ を $F$ の標数と異なる素数とする. $X$ を $K$ 上の固有かつ滑らかな代数多様体 とする. ウェイト・モノドロミー予想と はこれらの 2 つのフィルトレーションが次数のずれを除いて一致するという予想である. 予想 Ll (ウエイト. \yen $\text{ノ}$ ドロミー予想, [De2]). $M$ をモノドロミー. フィルトレーショ ン, $W$ をウェイト・フィルトレーションとする. このとき $M_{i}V=W_{w+i}V$ が全ての $i$ で 成り立つ. さて, 主結果を述べよう. 定理 12([It]). $K$ が正標数ならばウエイト・モノドロミー予想は正しい. 系として, モデルをとって標数 $p$ に還元することで, $K,$ $F$ が両方とも標数 0 の場合も 正しいことも分かる. 系 L3. $K$ と $F$ の標数が等しければウェイト・モノドロミー予想は正しい. つづく




次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch