現代数学の系譜 工学物理雑談 古典ガロア理論も読む83at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む83 - 暇つぶし2ch45:132人目の素数さん
20/02/10 17:11:38.94 cxexSbfY.net
(>>40の続き)
このことに注意して、有理点 A(x/z,y/z) が存在する位置について場合分けをする。
Case1):平面 R^2 上の半径1の円周上に有理点 A(x/z,y/z) は存在するとき。
0<x/z<1、0<y/z<1 から、確かに平面 R^2 上の半径1の円周上に有理点 A(x/z,y/z) は存在し、(x/z)^2+(y/z)^2=1 を満たすことになる。
θの定義と 0<θ<π/2、0<x/z<1 から、cos(θ)=x/z。同様に、θの定義と 0<θ<π/2、0<y/z<1 から、sin(θ)=y/z。
仮定において成り立つとした等式 x^n+y^n=z^n から、(x/z)^n+(y/z)^n=1。よって、cos^n(θ)+sin^n(θ)=1 となる。
しかし、仮定から n≧3 であり、0<θ<π/2 から 0<cos(θ)=x/z<1、0<sin(θ)=y/z<1 だから、
0<cos^n(θ)+sin^n(θ)<1 から cos^n(θ)+sin^n(θ)≠1 となって矛盾が生じる。
Case2):平面 R^2 上の半径1の円周で囲まれた円の中に有理点 A(x/z,y/z) が存在するとき。
0<x/z<1、0<y/z<1 から、確かに平面 R^2 上の半径1の円周で囲まれた円の中に有理点 A(x/z,y/z) は存在し、(x/z)^2+(y/z)^2<1 を満たす。
θの定義と 0<θ<π/2、0<x/z<1 から、cos(θ)=x/z。同様に、θの定義と 0<θ<π/2、0<y/z<1 から、sin(θ)=y/z。
よって、0<cos^2(θ)+sin^2(θ)<1 となる。しかし、これは cos^2(θ)+sin^2(θ)=1 に反し矛盾する。
Case3):平面 R^2 上の半径1の円周で囲まれた円の外側に有理点 A(x/z,y/z) が存在するとき。
0<x/z<1、0<y/z<1 から、確かに平面 R^2 上の半径1の円周で囲まれた円の外側に有理点 A(x/z,y/z) は存在し、(x/z)^2+(y/z)^2>1 を満たす。
θの定義と 0<θ<π/2、0<x/z<1 から、cos(θ)=x/z。同様に、θの定義と 0<θ<π/2、0<y/z<1 から、sin(θ)=y/z。
よって、cos^2(θ)+sin^2(θ)>1 となる。しかし、これは cos^2(θ)+sin^2(θ)=1 に反し矛盾する。
Case1)、Case2)、Case3)から、有理点 A(x/z,y/z) が存在し得る位置について、何れの場合においても矛盾が生じる。
背理法が適用出来るから、背理法を適用すれば、どんな3以上の整数nに対しても、x^n+y^n=z^n を満たす3つの正整数x、y、zは存在しない。


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch