20/03/24 02:07:58.87 cfg1hqI2.net
>>897
具体的には球面上の2変数の座標系stがあって
st平面上の領域Dと球面が(x,y,z)=f(s,t)で対応しているとき
球面上の一様分布を与えるst2変数の密度関数g(s,t)が存在し
dS/4π=g(s,t)dsdt
となる
頑張ればf,gは具体的な式で与えることは出来る
球面上の4点をp1=f(s1,t1)・・・p4=f(s4,t4)で表して
これら4点を頂点とする4面体の体積を表す関数V(p1,p2,p3,p4)を
何とか式で表せはするから
∬∬∬∬V(f(s1,t1),・・・,f(s4,t4))g(s1,t1)・・・g(s4,t4)ds1dt1・・・ds4dt4
を計算したら良いだけ