面白い問題おしえて~な 31問目at MATH
面白い問題おしえて~な 31問目 - 暇つぶし2ch747:132人目の素数さん
20/03/11 13:00:47 t9boZF0q.net
>>708
残念

748:132人目の素数さん
20/03/11 13:14:52 1JNnQUXE.net
6または7?

749:132人目の素数さん
20/03/11 13:53:35.94 t9boZF0q.net
>>710
正解
n回目に賭けて当たる確率は (n-1)(5/6)^(n-2)*(1/6)^2 で、
これが最大になるのはn=6,7の時。

750:132人目の素数さん
20/03/11 15:17:40 YQLdoe7U.net
EをR^N上のボレル集合、AをN×N行列、LをN次元ルベーグ測度とする このとき
L(A(E))=|detA|L(E)
が成立することを証明せよ

751:132人目の素数さん
20/03/11 15:19:30 3HNckciv.net
どちらかに賭けても勝率6.7%か

752:132人目の素数さん
20/03/11 15:30:24 hVKkfTiV.net
>>711
10万回シミュレーションしてみた。

URLリンク(i.imgur.com)

"1が累計m(=2)回出るまでサイコロを振って、振った回数を当てるギャンブルがある。
何回目に賭けるのがベストか?"

sim <- function(m=2){
pip1=0 # 1の目の出た回数
i=0 # サイコロを振った回数
while(pip1 < m){
i=i+1
pip1 = pip1 + (sample(6,1)==1)
}
return(i)
}
k=1e5
re=replicate(k,sim())
tbl=table(re) ; tbl
which.max(tbl)
plot(tbl/k,bty='l')

753:132人目の素数さん
20/03/11 16:15:06 hVKkfTiV.net
>>711
100回目までを計算してみた。

> sapply(1:100,bg)
[1] 1 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114
[21] 120 126 132 138 144 150 156 162 168 174 180 186 192 198 204 210 216 222 228 234
[41] 240 246 252 258 264 270 276 282 288 294 300 306 312 318 324 330 336 342 348 354
[61] 360 366 372 378 384 390 396 402 408 414 420 426 432 438 444 450 456 462 468 474
[81] 480 486 492 498 504 510 516 522 528 534 540 546 552 558 564 570 576 582 588 594

bg <- function(x,print=FALSE){ # big gambling
f <- function(n,m=x,p=1/6) choose(n-1,m-1)*p^(m-1)*(1-p)^(n-m)*p
nn=1:


754:(10*x) y=optimize(function(n) f(n),nn,maximum=TRUE)$maximum if(print){ plot(nn,sapply(nn,f),bty='l',pch=19) yy=c(floor(y),ceiling(y)) cat(c(f(yy[1]),f(yy[2])),'\n') } return(floor(y)) } sapply(1:100,bg)



755:イナ ◆/7jUdUKiSM
20/03/11 16:31:01 LbRSBTGq.net
>>706
>>707
6回目に2回目の当たりが出る確率は、
1回目の当たりが何回目に出るかが、4回のはずれに対し5通りあるから、
5(5/6)^4(1/6)^2=5^5/6^6
=0.0669795953……
7回目に2回目の当たりが出る確率は、
1回目の当たりが何回目に出るかが、5回のはずれに対し6通りあるから、
6(5/6)^5(1/6)^2=5^5/6^6
=0.0669795953……
6回目と7回目は約6.69795953%の確率で2回目の当たりが出るが、これだけでベストかどうかはわからず、前後を調べる必要がある。
8回目に2回目の当たりが出る確率は、
1回目の当たりが何回目に出るかが、6回のはずれに対し7通りあるから、
7(5/6)^6(1/6)^2=7・5^6/6^8
=0.065119051……
5回目に2回目の当たりが出る確率は、
1回目の当たりが何回目に出るかが、3回のはずれに対し4通りあるから、
4(5/6)^3(1/6)^2=4・5^3/6^5
=125/1944
=0.0643004115……
9回目に2回目の当たりが出る確率は、
1回目の当たりが何回目に出るかが、7回のはずれに対し8通りあるから、
8(5/6)^7(1/6)^2=8・5^7/6^9
=5^7/6^6・3^3
=0.0620181438……
∴5回目、8回目、9回目辺りはいずれも6%を超えていて大差ないけど、6回目か7回目に賭けるのがベター。

756:132人目の素数さん
20/03/11 16:39:52 hVKkfTiV.net
>>715
最初の1を除けば等差数列にみえるな。

757:132人目の素数さん
20/03/11 16:46:21 hVKkfTiV.net
1が累計1000回出るまでサイコロを振って、振った回数を当てるギャンブルがある。
何回目に賭けるのがベストか?

6*1000-6 = 5994 と 5995回に賭けるのがベストぽいな。

多分、計算名人のイナ氏が検証してくれると思うw

758:132人目の素数さん
20/03/11 19:32:14.87 hXdWKFHv.net
確率pで成功する試行で、n回目の試行でm回成功する確率をP(n)と置くと
P(n)=C[n-1,m-1]p^m(1-p)^(n-m)だから、
P(n+1)=C[n,m-1]p^m(1-p)^(n+1-m)=n/(n+1-m)(1-p)P(n)
1≦P(n+1)/P(n)のとき、1≦n/(n+1-m)(1-p)、n+1-m≦n-np、n≦(m-1)/p=999/(1/6)=6000-6
なので5994または5995がベスト

759:132人目の素数さん
20/03/11 19:43:41.17 6p8KFnbi.net
>>707
青チャートに1が三回のバージョンがあった、最近解いた

760:132人目の素数さん
20/03/11 20:02:08.69 hVKkfTiV.net
>>719
ありがとうございます。

761:132人目の素数さん
20/03/11 21:54:30.90 UDcjpAEJ.net
サイコロを全ての目が最低1回出るまで振り続ける。振る回数の期待値を求めよ。

762:132人目の素数さん
20/03/11 22:02:49.23 nurrYDlF.net
6(1/6+2/6+3/6+4/6+5/6+6/6)

763:132人目の素数さん
20/03/12 06:18:47 ggB+4VIO.net
1万回のシミュレーション

> sim <- function(){
+ flag=FALSE
+ i=0
+ pips=NULL
+ while(flag==FALSE){
+ i=i+1
+ pips=c(pips,sample(6,1))
+ flag=all(1:6 %in% pips)
+ }
+ i
+ }
> k=1e4
> mean(replicate(k,sim()))
[1] 14.7221
>

764:132人目の素数さん
20/03/12 07:47:25.15 NnHS9/Ym.net
>>723
残念

765:132人目の素数さん
20/03/12 07:47:38.94 NnHS9/Ym.net
>>724
正解

766:132人目の素数さん
20/03/12 07:53:40.63 NnHS9/Ym.net
=6/6+6/5+6/4+6/3+6/2+6/1
=14.7

767:132人目の素数さん
20/03/12 07:56:14.15 ggB+4VIO.net
100万回で>
k=1e6
> mean(replicate(k,sim()))
[1] 14.70651

768:132人目の素数さん
20/03/12 08:18:12 NnHS9/Ym.net
最初の1つがでるまでの回数の期待値
=6/6

1つ目が出てから次が出るまでの回数の期待値
=6/5

2つ目が出てから次が出るまでの回数の期待値
=6/4

以下同様

回数の期待値なので、単純に上記の和を求めればよい

769:132人目の素数さん
20/03/12 08:42:22 HLafz7hZ.net
成功確率pの試行を繰り返すとき、最初に成功するまでの試行回数の期待値は 1/p
これを使って計算する

770:132人目の素数さん
20/03/12 08:50:06 +Rsy6sl8.net
>>730
幾何分布とか名前がついていたような。

771:132人目の素数さん
20/03/12 08:52:30 HLafz7hZ.net
>>731
そうです。ファーストサクセス分布(Fs分布)とも言います。

772:132人目の素数さん
20/03/12 09:07:14 HLafz7hZ.net
訂正します。

成功するまでに失敗した回数の分布
=幾何分布
成功するまでの回数の分布
=ファーストサクセス分布

でした。

773:132人目の素数さん
20/03/12 09:32:1


774:6 ID:JYe4Js2p.net



775:132人目の素数さん
20/03/12 09:58:21.78 z4kbZ3QY.net
クーポンコレクター問題の一般化
サイコロふって1,2,3が出る事をA、4,5が出る事をB、6が出る事をCとする。
ABCが全て少なくとも一回起こるまでの平均は?

776:132人目の素数さん
20/03/12 10:36:06 +Rsy6sl8.net
>>735
1万回のシミュレーション結果

> A=1:3
> B=4:5
> C=6
>
> sim <- function(){
+ flag=FALSE
+ i=0
+ pips=NULL
+ while(flag==FALSE){
+ i=i+1
+ pips=c(pips,sample(6,1))
+ flag=any(A %in% pips) & any(B %in% pips) & any(C %in% pips)
+ }
+ i
+ }
> k=1e4
> mean(replicate(k,sim()))
[1] 7.2577
>

777:132人目の素数さん
20/03/12 11:11:23 +Rsy6sl8.net
10万回だと
> k=1e5
> mean(replicate(k,sim()))
[1] 7.30537

778:132人目の素数さん
20/03/12 11:35:46 0d6KLd2P.net
>>736
答えは?

779:132人目の素数さん
20/03/12 13:02:45 HLafz7hZ.net
難しい
これがABC予想というやつか

780:132人目の素数さん
20/03/12 13:08:38 ab2iyO1k.net
これ貼っとこか

0508 132人目の素数さん 2018/06/30 02:42:25
>>505
問題を一般化して、
カードA,B,C,Dの排出確率をa,b,c,dとする。(a,b,c,d>0, a+b+c+d≦1)
カードAが1枚出るまで引くときの平均枚数をM(A)とすると、
初回でカードAが出た場合の枚数は 1,出なかった場合の平均枚数は 1+M(A) となる。
よって M(A) = a + (1-a)(1+M(A))
これを解いて M(A)=1/a、同様に M(B)=1/b, M(C)=1/c, M(D)=1/d

カードA,Bがそれぞれ1枚以上出るまで引くときの平均枚数をM(A,B)とすると、
初回でカードAが出た場合の平均枚数は 1+M(B)
初回でカードBが出た場合の平均枚数は 1+M(A)
どちらも出なかった場合の平均枚数は 1+M(A,B) となる。

M(A,B) = a(1+M(B)) + b(1+M(A)) + (1-(a+b))(1+M(A,B))
これを解いてM(A,B) = (1 + aM(B) + bM(A)) / (a+b) = (1 + a/b + b/a) / (a+b)
整理して M(A,B) = (1 + ((a+b)/b - 1) + ((a+b)/a - 1)) / (a+b) = ((a+b)/b + (a+b)/a - 1)) / (a+b) = 1/a + 1/b - 1/(a+b)

同様の計算で、
カードA,B,Cがそれぞれ1枚以上出るまで引くときの平均枚数をM(A,B,C)とすると、
M(A,B,C) = 1/a + 1/b + 1/c - 1/(a+b) - 1/(b+c) - 1/(c+a) + 1/(a+b+c)

カードA,B,C,Dがそれぞれ1枚以上出るまで引くときの平均枚数をM(A,B,C,D)とすると、
M(A,B,C,D) = 1/a + 1/b + 1/c + 1/d - 1/(a+b) - 1/(a+c) - 1/(b+c) - 1/(a+d) - 1/(b+d) - 1/(c+d)
      + 1/(a+b+c) + 1/(d+a+b) + 1/(c+d+a) + 1/(b+c+d) - 1/(a+b+c+d) を得る。

781:132人目の素数さん
20/03/12 13:34:32 +4qdqMNu.net
>>740
ありゃ、出ちゃったか。

782:132人目の素数さん
20/03/12 13:39:16 p+P9uShJ.net
a=3/6, b=2/6, c=1/6 として
E=1/a+1/b+1/c-1/(b+c)-1/(c+a)-1/(a+b)+1/(a+b+c)
=2+3+6-1.5-2.0-1.2+1.0
=7.3

ほんとだ。シミュレーションと一致した。

783:132人目の素数さん
20/03/12 14:11:14 ddMlrvcN.net
P(n)=(3/6)*((3/6)^(n-1)-(1/6)^(n-1)-(2/6)^(n-1))+(1/6)*((5/6)^(n-1)-(2/6)^(n-1)-(3/6)^(n-1))+(2/6)*((4/6)^(n-1)-(1/6)^(n-1)-(2/6)^(n-1))
E=Σ[k=3,∞]kP(k)=1399/180=7.772222...

784:132人目の素数さん
20/03/12 15:09:55 U3HOlh4d.net
>>737
100万回シミュレーション結果 7.3ぽいね。

> k=1e6
> mean(replicate(k,sim()))
[1] 7.300615

785:132人目の素数さん
20/03/12 17:50:49 ddMlrvcN.net
>>743 訂正
P(n)=(3/6)*((3/6)^(n-1)-(1/6)^(n-1)-(2/6)^(n-1))+(1/6)*((5/6)^(n-1)-(2/6)^(n-1)-(3/6)^(n-1))+(2/6)*((4/6)^(n-1)-(1/6)^(n-1)-(3/6)^(n-1))
E=Σ[k=3,∞]kP(k)=73/10

786:132人目の素数さん
20/03/12 18:20:32.98 fHSLdc4D.net
>>745
不正解

787:132人目の素数さん
20/03/12 21:11:11 ddMlrvcN.net
>>746
何故>>745だけなんですか

788:132人目の素数さん
20/03/12 22:18:49 fHSLdc4D.net
>>747
計算機に入れてみた

789:132人目の素数さん
20/03/12 22:23:54 y8hLNrTr.net
p n=(3/6)*((3/6)^(n-1)-(1/6)^(n-1)-(2/6)^(n-1))+(1/6)*((5/6)^(n-1)-(2/6)^(n-1)-(3/6)^(n-1))+(2/6)*((4/6)^(n-1)-(1/6)^(n-1)-(3/6)^(n-1))

main = do
print $ sum [p n| n<-[3..10000]]

-------
0.9999999999999996

790:132人目の素数さん
20/03/12 22:28:30 y8hLNrTr.net
あ、失礼しました。
コード間違ってた。
正解でした。

p n=(3/6)*((3/6)^(n-1)-(1/6)^(n-1)-(2/6)^(n-1))+(1/6)*((5/6)^(n-1)-(2/6)^(n-1)-(3/6)^(n-1))+(2/6)*((4/6)^(n-1)-(1/6)^(n-1)-(3/6)^(n-1))

main = do
print $ sum [(fromInteger n)*(p n)| n<-[3..10000]]

------------

7.300000000000009

791:132人目の素数さん
20/03/12 23:26:10.85 V/f7Uy6p.net
>>735
大学入試ではこの手の出題は御法度
なぜなら終わらないことを試行としてはいけないから

792:132人目の素数さん
20/03/12 23:59:54 y8hLNrTr.net
>>751
ココ入試レベル縛りないでしょ?
むしろ入試レベルじゃ満足しない人の方が多


793:いのでは?



794:132人目の素数さん
20/03/13 00:11:24.13 2BG+LT6A.net
>>751
ん?終わるでしょ。

795:132人目の素数さん
20/03/13 00:13:44.72 IbYZYELm.net
入試レベル
袋の中に赤玉7個、白玉6個、黒玉5個入っている。
玉を一つずつ取り出していき赤玉を全て取り出した時点で終了とする。
取り出した白玉の個数の期待値は?
期待値が範囲外になったので入試では使えないけど。

796:132人目の素数さん
20/03/13 07:34:24.77 ZlFDi94b.net
>>754
10万回シミュレーション
balls=rep(1:3,7:5) # 玉の配列 1:赤 2:白 3:黒
picked=NULL # 取り出された玉の配列
flag=FALSE # 赤玉が全部取り出されたかのflag
sim <- function(){
while(flag==FALSE){
i=sample(length(balls),1) # 配列ballsのindexから1つ選んで
picked=c(picked,balls[i]) # そのindex相当の玉をpickedにいれて
balls=balls[-i]      # ballsの配列から除く
flag=sum(picked==1)==7  # 赤玉が全部取り出されたか
}
sum(picked==2) # 取り出された白玉の数を返す
}
k=1e5
mean(replicate(k,sim()))
> mean(replicate(k,sim()))
[1] 5.24854

797:132人目の素数さん
20/03/13 07:51:51.90 ZlFDi94b.net
>>755
白玉の個数の分布をグラフにしてみた。
URLリンク(i.imgur.com)

> summary(re)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 5.00 6.00 5.25 6.00 6.00
5.25が答みたいだなぁ。
解析解は賢者にお任せ。

798:132人目の素数さん
20/03/13 08:23:45.26 l20VjRfO.net
〔補題〕
0<p≦1 とする。
確率pで事象Aが起こるような試行を繰返し行なう。
初めて事象Aが起こるまでに試行した回数nの期待値は 1/p.
(略解)
 E{n} = p {1 + 2(1-p) + 3(1-p)^2 + 4(1-p)^3 + ・・・・ }
 = {1 - (1-p)} {1 + 2(1-p) + 3(1-p)^2 + 4(1-p)^3 + ・・・・ }
 = 1 + (1-p) + (1-p)^2 + (1-p)^3 + ・・・・
 = 1/p.

799:132人目の素数さん
20/03/13 08:35:28 9IyekctU.net
XiをX≧iのとき1、そうでないとき0と定めてq=1-pとすれば
E(X)
=ΣE(Xi)
=Σq^(i-1)
=1/(1-q)
=1/p

800:132人目の素数さん
20/03/13 11:33:57.90 l20VjRfO.net
最後の赤玉が出たのがn回目とする。(7≦n≦18)
・(n-1)回目までに取り出す白玉/黒玉はn-7個で、 C[11,n-7] とおり。 (*)
・取り出すn個が決まったとして、順番を入れ替える方法は
 1~(n-1)回目  (n-1)! とおり
 n回目      7 とおり
 (n+1)~18回目  (18-n)! とおり 〔実際は取出さないが・・・〕
これらをを掛ければ
 Σ[n=7,18] 7・(n-1)!・(18-n)!・C[11,n-7]
 = 11!Σ[n=7,18] 7(n-1)(n-2)・・・・(n-6)
 = 11!Σ[n=7,18] {n(n-1)・・・・(n-6) - (n-1)・・・・(n-6)(n-7)}
 = 11!(18!/11!)
 = 18!      (←当然)
次に、n回目までの白玉の数w の期待値を求める。
wを掛けてたすと (*)の所が 6C[10,n-8] となる。
 Σ[n=7,18] 6・7・(n-1)!・(18-n)!・C[10,n-8]
 = (6・7/8)10!Σ[n=8,18] 8(n-1)(n-2)・・・・(n-7)
 = (6・7/8)10!Σ[n=8,18] {n(n-1)・・・・(n-7) - (n-1)・・・・(n-7)(n-8)}
 = (6・7/8)10!(18!/10!)
 = (6・7/8)18!
∴ E{w} = 6・7/8 = 5.25
*)
 7≦n≦12 のとき Σ[w=0,n-7] C[6,w] C[5,n-7-w] ・・・・
 13≦n≦18 のとき Σ[w=n-12,6] C[6,w] C[5,n-7-w] ・・・・

801:132人目の素数さん
20/03/13 11:56:03 l20VjRfO.net
(n-1)回目までの白玉の数wの分布は     >>756
 P_w = (7!/13!)(w+1)(w+2)(w+3)(w+4)(w+5)(w+6),

 Σ[w=0,6] P_w = (7!/13!)Σ[w=0,6] (w+1)(w+2)・・・・(w+6)
 = (6!/13!)Σ[w=0,6] {(w+1)・・・・(w+6)(w+7) - w(w+1)・・・・(w+6)}
 = (6!/13!)(13!/6!)
 = 1.

E{w} = Σ[w=1,6] w・P_w = (7!/13!)Σ[w=0,6] w(w+1)(w+2)・・・・(w+6)
 = (7!/13!)Σ[w=1,6] (1/8){w・・・・(w+6)(w+7) - (w-1)w・・・・(w+6)}
 = (7!/13!)(1/8)(13!/5!)
 = (7・6/8)
 = 5.25

802:132人目の素数さん
20/03/13 12:21:36 eu0owVym.net
>>760
正解!
想定解出してもいいけど実はある事に気づくと数行で終わります。



803:どうしよう? 夜まで待ってみますね。



804:132人目の素数さん
20/03/13 12:49:17 l20VjRfO.net
白玉の個数wの分布
 0個   1個   2個    3個    4個    5個    6個
1/1716, 7/1716, 28/1716, 84/1716, 210/1716, 462/1716, 924/1716
 0.06%  0.41%  1.63%   4.90%   12.24%   26.92%   53.84%

805:132人目の素数さん
20/03/13 13:11:02.52 m1uM3VjH.net
黒玉は無視
赤玉7個を並べておき、その前後と間の8ヶ所に白玉6個をランダムに入れていく(重複あり)
赤玉の後ろに白玉がいくつあるかを考えるとき、白玉1個につき期待値1/8となるので6個なら6/8=3/4
従ってそれ以外のところにある白玉の個数の期待値は6-3/4=5.25

806:132人目の素数さん
20/03/13 13:12:33.86 eu0owVym.net
>>763
それです。
お見事。

807:132人目の素数さん
20/03/13 13:14:30.61 m1uM3VjH.net
赤玉の後ろ以外にいくつあるかを考えるとき白玉1個につき期待値7/8なので6個なら6*7/8=5.25でよかったわ

808:132人目の素数さん
20/03/13 14:10:27.98 qPbrkgFl.net
>>754
P(k)=Σ[k=0,6]Σ[j=0,5]C[7,6]C[6,k]C[5,j]/(C[18,6+k+j](12-k-j))
E=kP(k)=21/4

809:132人目の素数さん
20/03/13 15:04:09.49 eu0owVym.net
>>766
さすがにダメやろ。
いくら原理的にはコレ計算したらできるって立式を書いても、その計算が最低目で追えるものを見せないと正解とは認定されない。

810:132人目の素数さん
20/03/13 15:27:09.74 Pzzsy05r.net
最小交点数がnの結び目は何種類あるのか。

811:132人目の素数さん
20/03/13 16:45:01 l20VjRfO.net
黒玉は無視する。(13個で考える)
(最後の赤玉が出る前の) 白玉の数をwとすると、
最後の(6-w)個が白玉、その直前が赤玉、他は不問だから
 P_w = (6/13)(5/12)・・・・((w+1)/(w+8))・(7/(w+7))
  = (7!/13!)(w+1)(w+2)(w+3)(w+4)(w+5)(w+6),
あとは >>760

812:132人目の素数さん
20/03/13 18:07:52 qPbrkgFl.net
>>767
これは、よく分からないがwolframで計算してみたら一致した
偶然一致するとは思えないが?

813:132人目の素数さん
20/03/13 18:14:21 qPbrkgFl.net
>>767
P(k)の値(k=0~6)は>>762と一致する

814:132人目の素数さん
20/03/13 18:20:08 ieVI6aZ4.net
なるほど
時系列で考えていくと発想が広がりにくいが、並べて考えるとわかりやすいな。
参考になる

815:132人目の素数さん
20/03/13 18:34:42 qPbrkgFl.net
>>767
C[7,6]C[6,k]C[5,j]/C[18,6+k+j]
ここの部分が、赤6、白k、黒jの計6+k+j回玉を取り出したときの確率
分子と分母は、玉に番号を付けた場合の場合の数になっている
最後に1/(12-k-j)で赤を取り出す確率を掛ける

816:132人目の素数さん
20/03/13 18:37:26 eu0owVym.net
>>770
いや、コレを計算できれば答えが出るなんて式たてるだけなら受験レベルの問題ならできて当たり前。
受験レベルで解くという意味ならその中で二十分程度で無理なく実際にできるというところまでやって見せてみて初めて正解。
計算機ならできるでは、受験レベルを超えてるようなやつならともかく受験レベルの問題と銘打って出題されてるんだから、通用しない。

817: 【大凶】
20/03/13 22:15:14 OegQL28o.net
>>716
>>754
6(7/8)=5.25

818:132人目の素数さん
20/03/13 22:39:53 qPbrkgFl.net
>>774
この問題は難しいから受験で出題されるとは思わない

819:132人目の素数さん
20/03/14 01:23:48.44 Qtllr5m8.net
え?

820:132人目の素数さん
20/03/14 01:27:44.99 j/jXCgRq.net
このスレは受験で有効な解答のみ正解という訳では�


821:ネかろう



822:イナ ◆/7jUdUKiSM
20/03/14 02:19:09 V5zn1x6j.net
_____∩ っ゙___
\ (-_-))  /|
\\υ⌒υ、 /|
 ̄ ̄ ̄ ̄|υ/|
________「 ̄|
九九を習った小学2年生なら解けるんだよな。
>>775滑り台の角度も摩擦係数も知らない、ましてや静止距離など。

823:132人目の素数さん
20/03/14 10:30:01.48 a/1EREm4.net
こうしたらどうなる?
袋の中に赤玉7個、白玉6個、黒玉5個入っている。
玉を一つずつ取り出していき赤玉を4個取り出した時点で終了とする。取り出した白玉の個数の期待値は?

824:132人目の素数さん
20/03/14 10:32:20.86 uXVhjaRg.net
7/8が4/8にかわるだけでは?

825:132人目の素数さん
20/03/14 10:40:16.33 a/1EREm4.net
>>781
6*4/8=3でいいのか。

826:132人目の素数さん
20/03/14 10:45:58.12 5sXkLHY6.net
>>780
P(k)=Σ[j=0,5]4C[7,3]C[6,k]C[5,j]/(C[18,3+k+j](15-k-j)
E=Σ[k=0,4]kP(k)=881/429

827:132人目の素数さん
20/03/14 10:50:54.02 rjLc6zup.net
整数の無限部分集合Aであって、どの互いに異なる a,b∈A をとっても
|a-b| が平方数にならないものは存在するか。

828:132人目の素数さん
20/03/14 10:51:33.67 Qtllr5m8.net
>>754
7/8 * 6=21/4
>>780
4/8 * 6=3

829:132人目の素数さん
20/03/14 11:02:50.20 Qtllr5m8.net
袋の中に赤玉7個、白玉6個、黒玉5個入っている。
玉を一つずつ取り出していき赤玉を全て取り出した時点で終了とする。
取り出した白玉の個数から残った黒玉の個数を引いた値の期待値は?
取り出した白玉の個数から残った白玉の個数を引いた値の期待値は?
取り出した白玉の個数と残った黒玉の個数を掛けた値の期待値は?
取り出した白玉の個数と残った白玉の個数を掛けた値の期待値は?

830:132人目の素数さん
20/03/14 11:17:16 xUS1bw+b.net
>>784
レピュニット数を元とする無限集合とすればいい

831:132人目の素数さん
20/03/14 11:18:04 5sXkLHY6.net
>>766 訂正
P(k)=Σ[j=0,5]C[7,6]C[6,k]C[5,j]/(C[18,6+k+j](12-k-j))
E=Σ[k=0,6]kP(k)=21/4

832:132人目の素数さん
20/03/14 11:25:25 5sXkLHY6.net
>>786
E1=Σ[k=0,6](k-(5-j))P(k)=37/8
E2=Σ[k=0,6](k-(6-k))P(k)=9/2
E3=Σ[k=0,6](k(5-j))P(k)=35/12
E4=Σ[k=0,6](k(6-k))P(k)=35/12

833:132人目の素数さん
20/03/14 11:54:58 XpWNijuu.net
>>786
最初の2つは線形性でいける。
3番目は独立性。
暗算で苦しいのは最後だけだな。
黒玉ひとつに着目して取り出される確率がp=7/8。
よって取り出される個数Xの分布はp=7/8, n=6の二項分布。
X^2の期待値は
E(X^2) = Σ C[6,k)(1/8)^(6-k) (7/8)^k k^2=93/32。

URLリンク(www.wolframalpha.com)

834:132人目の素数さん
20/03/14 12:02:50 rjLc6zup.net
>>787
残念。|111-11|=100 は平方数になります

835:132人目の素数さん
20/03/14 12:05:48 43XV3aTx.net
おっと脳内で問題変わってたw
E(x(6-x)) = Σ C[6,k)(1/8)^(6-k) (7/8)^k k(6-k)=105/32。

URLリンク(www.wolframalpha.com)

836:132人目の素数さん
20/03/14 12:11:55 CncPdwb0.net
>>784
2×4^nで桶

837:132人目の素数さん
20/03/14 12:16:30 xUS1bw+b.net
>>791
確かにそうだった

838:132人目の素数さん
20/03/14 14:53:15 rjLc6zup.net
>>793
お見事、それがあったか

839:132人目の素数さん
20/03/14 14:55:15 iH59lf4s.net
>>784
A = {1, c, c^2, c^3, ・・・・| c>2}

 c^n - c^m = (c^m) {c^(n-m) - 1},
 c^(n-m) > 1,    (n>m)
カタラン予想(ミハイレスクの定理) により
 c^(n-m) - d^2 = 1 となる d >1 は存在しない。
∴ c^(n-m) - 1 は平方数でない。
c^m と c^(n-m) -1 は互いに素だから | c^n - c^m | は平方数でない。

A = {2, 8, 32, 128, 512, ・・・・} も同様?

840:132人目の素数さん
20/03/14 19:40:53.31 joJxF0LZ.net
>>789
シミュレーションで近似してみました。
> balls=rep(1:3,7:5) # 玉の配列 1:赤 2:白 3:黒
> picked=NULL # 取り出された玉の配列
> flag=FALSE # 赤玉が全部取り出されたかのflag
> sim <- function(){
+ while(flag==FALSE){
+ i=sample(length(balls),1) # 配列ballsのindexから1つ選んで
+ picked=c(picked,balls[i]) # そのindex相当の玉をpickedにいれて
+ balls=balls[-i]      # ballsの配列から除く
+ flag=sum(picked==1)==7  # 赤玉が全部取り出されたか
+ }
+ # 取り出した白玉の個数
+ a0=sum(picked==2)
+ # 取り出した白玉の個数から残った黒玉の個数を引いた値
+ a1=sum(picked==2)-sum(balls==3)
+ # 取り出した白玉の個数から残った白玉の個数を引いた値
+ a2=sum(picked==2)-sum(balls==2)
+ # 取り出した白玉の個数と残った黒玉の個数を掛けた値
+ a3=sum(picked==2)*sum(balls==3)
+ # 取り出した白玉の個数と残った白玉の個数を掛けた値
+ a4=sum(picked==2)*sum(balls==2)
+ return(c(a0,a1,a2,a3,a4))
+ }
> k=1e6
> re=replicate(k,sim())
> apply(re[2:5,]


841:,1,mean) [1] 4.627792 4.500442 2.904962 2.916039 > c(37/8,9/2,35/12,35/12) [1] 4.625000 4.500000 2.916667 2.916667



842:132人目の素数さん
20/03/14 22:15:14 Qtllr5m8.net
>>790,792
サンクス
期待値の線形性独立性の問題としてちょうど良さげかと
2項分布の分散がnpqということを使えば最後もそれほど難しくはない
V(X)=E(X^2)-E(X)^2=6(7/8)(1/8)=21/32
E(X^2)=21/32+(21/4)^2=903/32
E(X(6-X))=6E(X)-E(X^2)=63/2-903/32=105/32

843:132人目の素数さん
20/03/14 23:06:20 Qtllr5m8.net
>>784
a1=1
a2=min{x>a1 | x-a1≠n^2}=3
a3=min{x>a2 | x-a1, x-a2≠n^2}=6

a[n+1]=min{x>an | x-a1,,,x-an≠n^2}

844:132人目の素数さん
20/03/14 23:15:16 Ior9sgvQ.net
>>798
二項分布の分散‥‥そんなのあったあったw
忘却の彼方ww

845:132人目の素数さん
20/03/14 23:26:01 Qtllr5m8.net
>>797
後2問シミュレーションと随分違うな
何故?
37/8, 9/2, 105/32, 105/32
を想定

846:132人目の素数さん
20/03/15 00:54:39.47 ijdl7Zl+.net
>>801
しまった。
黒玉iが取り出される事象は独立でない。
取り出される事象の特性関数をXiとして
E(Xi)=E(Xi^2)=7/8
i≠jのときE(XiXj)=7/8×8/9=7/9
なので独立ではない。
よってX=ΣXiとすれば
E(X)=6×7/8=21/4
E(X^2)=6×7/8+30×7/9=343/12
E(X(6-X))=6E(X)-E(X^2)=63/2-343/12=35/12
でした。
吊ってくるorz。

847:132人目の素数さん
20/03/15 02:00:29 v+yfiMnW.net
>>802
あー
2項分布じゃないってことか
こりゃ不味いわめんどくさ

848:132人目の素数さん
20/03/15 02:03:24.48 v+yfiMnW.net
白黒も独立ではないなあ
こりゃ面倒くさすぎだった

849:132人目の素数さん
20/03/15 18:11:23 G3nSul4k.net
シミュレーションでなくて数え上げで計算してみたら>>789が正しそう

850:132人目の素数さん
20/03/15 19:35:56.64 63iW3LdD.net
面倒な問題だな

851:132人目の素数さん
20/03/15 20:18:17.77 OTl1KJku.net
>>780
黒は無視して、赤白計13個で総当たりで計算してみた。
TEnr <- function(n,r,zero=0,one=1){ # n(=5),r(=3)を指定して 0 0 1 1 1から1 1 1 0 0までの順列行列を作る
f=function(x){
re=rep(zero,n) # 容れ子
re[x]=one # 指定のindexにoneを代入
re
}
t(combn(n,r,f)) # oneを入れる組み合わせに上記関数fを実行して転置
}
TE=TEnr(13,7,0,1) # 0:白 1:赤 13個の並びの行列 1111111000000 から 0000001111111まで13C7(=1716)個
(x=TE[1000,]) # 1000行目のエントリ
f <- function(x){ # 0 1 1 1 0 1 0 1 0 1 1 0 0 -> 2 赤(1)が4個に達すまでの0の数を返す
i4=which(cumsum(x)==4)[1] # 累積和が最初に4になったindexをi4として
sum(x[1:i4]==0)      # i4までの白(0)の個数を返す
}
re=apply(TE,1,f)
sum(re)
length(re)
mean(re)
> sum(re)
[1] 5148
> length(re)
[1] 1716
> mean(re)
[1] 3
答は3

852:132人目の素数さん
20/03/15 22:08:54.75 v+yfiMnW.net
>>806
白単独なら2項分布と同じで
白黒などでも線形なら2項分布で計算しても正しい値になるから
単に答えだけ見るのだと
正しい考察の結果かどうか分からないので
これ>>786の第1,2問は悪問だな
第3,4問だけなら2項分布で計算すると正しい答えにならないからこれは良問

853:132人目の素数さん
20/03/15 22:43:58.90 ijdl7Zl+.net
>>808
いや、期待値の線形性は別に独立性は必要ないので問題ないよ。
二項分布の公式は使えないけど例えば第一問なら黒玉iが取られる事象の特性関数をBi、白玉jが取られる事象の特性関数をWjとすれば一問


854:目の求める期待値は E(ΣWj-(5-ΣBi))=ΣE(Wj)-5+ΣE(Xi)=6×7/8-5+5×7/8=37/8。 コレは独立性いらない。



855:132人目の素数さん
20/03/15 22:48:53.64 cWmNKZcu.net
n個からr個を選んで得られる順列の総数をP(n, r)とする. 任意のr>1に対して, P(n, r)は平方数でないことを示せ.

856:132人目の素数さん
20/03/15 22:53:22.66 ijdl7Zl+.net
エルデシュktkr

857:132人目の素数さん
20/03/16 00:26:55 xw7qN3/R.net
>>809
>いや、期待値の線形性は別に独立性は必要ないので問題ないよ。
それは分かってる
だからこそ2項分布で解いてしまっても間違いが分からないのが悪問ってコトだよ

858:132人目の素数さん
20/03/16 00:31:06 xw7qN3/R.net
>>812
>それは分かってる
もともと白-黒と白-白にしたのは独立性に関係しないことを認識しているかどうかを主眼としたかったから(白と黒が独立と思ってた)
独立線形
非独立線形
独立非線形
非独立非線形
で4題にできて上手く行ったと思ってた
悔しい

859:132人目の素数さん
20/03/16 06:19:30 FQrBPIz6.net
A,A,A,B,B,C,D,E,F,Gの10文字を並べるとき、どこかで同じ文字が隣り合う確率を求めよ(東北大・改)

860:132人目の素数さん
20/03/16 08:51:01.03 CVVw1pKV.net
>>814
総当たりで計算
# A,A,A,B,B,C,D,E,F,Gの10文字を並べるとき、どこかで同じ文字が隣り合う確率を求めよ(東北大・改)
library(gtools)
v=rep(1:7,c(3,2,rep(1,5)))
pm=try(permutations(10,10,v,set=F))
tail(pm)
f <- function(x){
n=length(x)
flg=FALSE
for(i in 1:(n-1)){
if(x[i]==x[i+1]){
flg=TRUE
break
}
}
return(flg)
}
(x=pm[10000,])
re=sum(apply(pm,1,f))
library(gmp)
N=nrow(pm)
as.bigq(re/N)
re/N
Big Rational ('bigq') :
[1] 1388609885105903/2251799813685248
> re/N
[1] 0.6166667

861:132人目の素数さん
20/03/16 09:32:03.26 6K81jsqz.net
同じ文字が一度も隣合わないような場合の数を考える。
そのためにCDEFGを全てXで置き換え、『AとBは一度も隣合わない』ような場合の数を考える。
(つまりXだけは隣り合っても良い)
AとBだけに着目した時の並びが
(1)AAABBである時、最低でも AXAXABXB というスペースの空け方が必要。
このAとBで区切られた6つの区間に残りの二つのXが入るから、求める場合の数は 7C2=21.
(2)AABABである時、最低でも AXABAB というスペースの空け方が必要。
6つの区間に残りの四つのXが入るから、求める場合の数は 9C4=126.

以上のように計算を進めると、求める場合の数の合計は
2*7C2 + 3*8C3 + 4*9C4 + 10C5 = 966
A,B,Xの並べ方の総数は 10C5 * 5C2 = 2520 であるから、求める確率は
966/2520 = 23/60.
ゆえに元々の問の答えは 1-23/60=0.6166666…

862:132人目の素数さん
20/03/16 12:00:30.78 ktTTjCEF.net
半径1の球面上の4点を一様独立に選ぶとき、その4点の凸包の体積の期待値を求めよ。

863:イナ ◆/7jUdUKiSM
20/03/16 18:51:48 thhgKhx4.net
/∥__`∥ ̄ ̄∥ 。◯゜
∥∩∩ ∥ □ ∥  ゚。
((-_-)∥  ∥______
(っ⌒⌒゙  。∥╂─╂
■`(_)_)ц~ ∥∩∩╂
\■υυ■___∥_ _))⌒つ、\\\\\\\\\\\\\\\\\\\\\\\\\\\`>>817>>779
凸包の期待値=(4π/3)1^3=4π/3=4.1887902……

864:132人目の素数さん
20/03/17 02:08:40.83 Rdjv/Owr.net
>>817
4π/105

865:イナ
20/03/17 05:19:54.91 jcKSZR9M.net
てつはう。前>>818最初見た人鉄砲とよう読


866:んだなぁ。 凸包は正四面体なのか、4点を包む最小の球なのか。



867:132人目の素数さん
20/03/17 07:53:05.59 Ze9EuNOD.net
>>820
四面体で100万回シミュレーションして平均値をだしてみた。
vertices <- function(r=1){
a=runif(2,-pi,pi) # 角度Θ,Φを一様分布で選らんで
theta=a[1]
phi=a[2]
x=r*sin(theta)*cos(phi)
y=r*sin(theta)*sin(phi)
z=r*cos(theta)
c(x,y,z) # 直交座標を返す
}
sim <- function(r=1){
vectors=replicate(4,vertices(r)) # 4点の直交座標
abs(det(vectors[,2:4]-vectors[,1]))/6 # 四面体の体積
}
k=1e6
re=replicate(k,sim())
mean(re)
> mean(re)
[1] 0.1069067

868:132人目の素数さん
20/03/17 09:10:52.71 Ze9EuNOD.net
球の場合(最小球か否かは考慮せず)の10万回シミュレーションの平均値
library(nleqslv)
Abs <- function(x) sqrt(sum(x^2))
sphere <- function(CR){ # CR:Center,Radius
C=CR[1:3]
R=CR[4]
v4=replicate(4,vertices())
c(
Abs(v4[,1]-C),Abs(v4[,2]-C),Abs(v4[,3]-C),Abs(v4[,4]-C)
)-R
}
sphere(1:4/10) # example
sim2 <- function(){
r=nleqslv(1:4/10,sphere)$fvec[4] # 初期値 1:4/10 c(0.1,0.2,0.3,0.4)
4/3*pi*r^3
}
sim2()
k=1e5
re=replicate(k,sim2())
mean(re)
> mean(re)
[1] 1.8112

869:132人目の素数さん
20/03/17 10:56:05.58 jkHV1VNx.net
>>822
その数値の厳密値を

870:132人目の素数さん
20/03/17 11:25:44 Xb0J7ujj.net
>>821
># 角度Θ,Φを一様分布で選らんで

経度緯度を一様分布にしたら極に分布が偏らないかい?

871:132人目の素数さん
20/03/17 12:05:03.60 k85T9ON2.net
>>824
グラフにしてみました。
ご指摘どおり、偏りがでました。
URLリンク(i.imgur.com)

872:132人目の素数さん
20/03/17 12:52:38.52 jkHV1VNx.net
>>825
全然ダメだね

873:132人目の素数さん
20/03/17 13:24:44.75 k85T9ON2.net
>>824
正方形内で乱数x,yを発生させて r^2-(x^2+y^2)が負になるのは除外して、北半球と南半球は1/2ずつ分配して乱数発生させてみた。
URLリンク(i.imgur.com)
こっちの方が一様分布っぽいな。

874:132人目の素数さん
20/03/17 13:29:03.21 k85T9ON2.net
>>827
これで10万回シミュレーションして、凸包は球(最小球の考慮なし)としてみると
k=1e5
re=replicate(k,sim3())
mean(re)
> mean(re)
[1] 1.800846
という値がでてきた。

875:132人目の素数さん
20/03/17 13:59:08.56 jkHV1VNx.net
>>827
だめでしょ
xyzで外と原点は切ってそれ以外は正規化はどうかなあ
これでもダメかも知らんが

876:132人目の素数さん
20/03/17 14:27:38.49 jkHV1VNx.net
θφで面素密度に合わせて乱数にしたら良いと思う
dS=cosθdθdφなのでθという値を取る確率をcosθにする
つまりzθの長方形で乱数発生させてz>cosθは除外してθを取る
dV=dxdydz=rdrdSだから
xyzで球の外を除外して正規化しても本質は同じだな

877:132人目の素数さん
20/03/17 14:30:18.93 jkHV1VNx.net
dV=drdS
rは余計だったが言わんとするところは分かろう

878:132人目の素数さん
20/03/17 17:38:54.16 k85T9ON2.net
>>830
それを実装してみました。
vertex <- function(r=1){ #緯度φ周りの帯の面積に応じて一様分布
theta=runif(1,-pi,pi) # 経度θ
p=sqrt(runif(1)) # 分布確率pを一様分布にする
phi=asin(2*p-1) # 確率がpになる緯度φ
x=r*cos(phi)*cos(theta) # 曲座標から直交座標に
y=r*cos(phi)*sin(theta)
z=r*sin(phi)
c(x,y,z)
}
vtx=replicate(5000,vertex())
x=vtx[1,]
y=vtx[2,]
z=vtx[3,]
rgl::plot3d(x,y,z, col="slateblue")
URLリンク(i.imgur.com)

879:132人目の素数さん
20/03/17 17:54:56 k85T9ON2.net
>>832
これで4�


880:_発生させて4点を通る球の半径を連立方程式を計算機に解かせて 体積の10万回の平均をとると > k=1e5 > hull=replicate(k,sim()) > mean(hull) [1] 1.160583 という結果になった。 あまり、自信がない。 解析解は賢者にお任せ。



881:132人目の素数さん
20/03/17 19:33:25.26 Tm+KNX4Y.net
半径1の球に内接する正四面体の体積は 8/(9√3) = 0.5132..
>>817の解はこれより小さい(はず)

882:132人目の素数さん
20/03/17 20:40:37.39 k85T9ON2.net
>>834
vertex <- function(r=1){ #緯度φ周りの帯の面積に応じて一様分布
theta=runif(1,-pi,pi) # 経度θ
p=sqrt(runif(1)) # 分布確率pを一様分布にする
phi=asin(2*p-1) # 確率がpになる緯度φ
x=r*cos(phi)*cos(theta) # 極座標から直座標に
y=r*cos(phi)*sin(theta)
z=r*sin(phi)
c(x,y,z)
}
で、球の表面から4点を取り出して
# 四面体の体積
sim <- function(r=1,print=F){
v4=replicate(4,vertex()) # 4点の直交座標
if(print) print(v4)
abs(det(v4[,2:4]-v4[,1]))/6 # 四面体の体積
}
で10万回シミュレーションしたら
k=1e5
tetra=replicate(k,sim())
mean(tetra)
summary(tetra)
こんな結果
> summary(tetra)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000006 0.0242839 0.0645573 0.0928661 0.1361202 0.5035962
最大値は8/(9√3) = 0.5132..以下になっている

883:132人目の素数さん
20/03/17 21:18:37 k85T9ON2.net
こっちの方がx,y,zともに一様分布になっている。

vertex <- function(r=1){
x=runif(1,-1,1) # x ~ 一様分布[-1,1]
phi=runif(1,-pi,pi) # φ ~ 一様分布[-π,π]
y=sqrt(1-x^2)*cos(phi) # √(1-x^2)*cos(φ)
z=sqrt(1-x^2)*sin(phi) # √(1-x^2)*sin(φ)
r*c(x,y,z)
}

URLリンク(i.imgur.com)
URLリンク(i.imgur.com)

これでやってみると、四面体の場合
> mean(tetra)
[1] 0.1201118

> summary(tetra)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000003 0.0372266 0.0922805 0.1201118 0.1794858 0.5104545

884:132人目の素数さん
20/03/17 22:43:27.26 jkHV1VNx.net
>>836
>x,y,zともに一様分布
ではダメだろ
球面上に一様に分布するのなら
x座標は√(1-x^2)の確率密度となる

885:132人目の素数さん
20/03/17 22:51:51.42 jkHV1VNx.net
あーそうか
st正方形でsとtと一様ランダムに点を得て
原点中心の円の外にあれば棄て
内部にあればそのs座標を取ることで
確率密度√(1-s^2)の分布でランダムに取れる
これでxyzをそれぞれ取ってやればいい
あーダメか独立に取ったら球面上に来ないな
じゃあこれでxを取ってyzはcosθsinθでθを一様ランダムに取れば良いや

886:132人目の素数さん
20/03/17 22:53:39.72 jkHV1VNx.net
y,zは√(1-x^2)cosθ,√(1-x^2)sinθで

887:132人目の素数さん
20/03/17 23:09:55.33 jkHV1VNx.net
>>837
あー間違いか>>836で正しいやスマン

888:132人目の素数さん
20/03/18 04:39:06 LbXnfiiv.net
<V> = 1/6 = 0.16667 だったら >>834 の要求を満足するんだが・・・・

889:132人目の素数さん
20/03/18 09:41:40 POVuSFx0.net
某イベントで紹介された問題の同値な改題

整数から実数への関数 f:Z→R であって、任意の整数 x,y,z について
【 x^2 + 4y^2 = z^2 ならば f(x) + 4f(y) = f(z) 】
を満たすものを全て求めよ

890:イナ
20/03/18 12:22:31.26 /PMjHzs1.net
\\\\\`∩∩、\\\
\\\\⊂(_ _))`⌒つ`
\\\\\\\`υ、\\\\\\\\\\\\\\\\\`原点を頂点とした三角錘が4つ集まった四面体の体積は、
V=(4/3)Sh
h=1/3(∵球の半径=1)
S=(√3/4)a^2とすると、
底面の中心から底辺までの距離はピタゴラスの定理より、
√{1^2-(1/3)^2}=2√2/3
正三角形の高さは√2
a=√2(2/√3)
=2√2/√3
S=(√3/4)(2√2/√3)^2
=(√3/4)(8/3)
=2√3/3
>>820
V=(4/3)(2√3/3)(1/3)
=8√3/27
=0.513200239……
ここまではわかった。
1点目が任意で、2点目をうまくとる確率は後回し、3点目をうまくとる確率も後回し、4点目をうまくとる確率は1/2
2点目と3点目は1と1/2のあいだじゃないとだめだと思うから、
3点目をうまくとる確率が2/3で2点目をうまくとる確率が3/4なら、
すべてうまくとる確率は1/4
V/4=2√3/27
=0.12830006……

891:132人目の素数さん
20/03/18 14:27:28 Tu49ygg5.net
>>836

数理はさっぱりわからないんだが、Wikipediaによれば正規分布に従う3変数から球面の一様分布座標が作れるらしい。
x1,x2,x3~Norm(0,1) で r=√(x1^2+x2^2+x3^2)として
(x1/r,x2/r,x3/r)が単位球面の一様分布になるという。

URLリンク(ja.wikipedia.org)
Marsaglia(1972)
URLリンク(projecteuclid.org)

実装してみた。
図示すると>836と同じく、x,y,zが一様分布して、球面の一様分布しているようにみえる。

vertex <- function(){ # xi ~ Norm(0,1) , xi/√(Σxi^2)
v=rnorm(3,0,1) # 正規分布N(0,1)する3個からなるベクトル v
v/sqrt(sum(v^2)) # v の長さで割る
}

vtx=replicate(5000,vertex())
par(mfrow=c(3,1))
x=vtx[1,] ; hist(x,col='pink')
y=vtx[2,] ; hist(y,col='orange')
z=vtx[3,] ; hist(z,col='darkgreen')
rgl::plot3d(x,y,z, col='slateblue')
par(mfrow=c(1,1))

# 四面体の体積
sim <- function(r=1,print=F){
v4=replicate(4,vertex()) # 4点の直交座標
if(print) print(v4)
abs(det(v4[,2:4]-v4[,1]))/6 # 四面体の体積
}
k=1e5
tetra=replicate(k,sim()) # k回のシミュレーション
mean(tetra)
summary(tetra)
BEST::plotPost(tetra)

期待値も分布もほぼ同じ。
> mean(tetra)
[1] 0.119512
> summary(tetra)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000001 0.0368084 0.0918738 0.1195120 0.1789221 0.5093198

四面体の体積の分布も同様でこんな分布。
URLリンク(i.imgur.com)

892:132人目の素数さん
20/03/18 14:45:48 kt0eelvd.net
>>844
>数理はさっぱりわからないんだが、Wikipediaによれば正規分布に従う3変数から球面の一様分布座標が作れるらしい。
独立に取ったときの確率密度がe^-(x^2+y^2+z^2)みたいなrのみの関数に比例するからだな
でも>>836でいいと思うし
関数の近似による偏りみたいなのを気にするなら
>>829でも球の外を除外した後の考え方はそのWikipediaのと同じだし

893:132人目の素数さん
20/03/18 15:06:17 Tu49ygg5.net
3次元化座標が球面の一様分布することは、図示してイメージするほかに、どうやったら検証できるのだろう?
球面上の任意の一定面積に含まれる数が一定であるのを確認する方法が思いつかない。

こういうデータが一様分布かどうかは確認できるだろうか
x y z
[1,] 0.4090696 -0.06240392 0.9103669
[2,] -0.1452435 -0.97420684 0.1727002
[3,] -0.1082045 0.53218504 0.8396850
.....
.....
x y z
[4998,] 0.6609463 -0.096259265 -0.7442340
[4999,] 0.5669702 0.758929767 -0.3202661
[5000,] 0.8944673 -0.008481795 -0.4470530

894:132人目の素数さん
20/03/18 15:16:53 kt0eelvd.net
>>846
xθとかθφで分割して点の数を数えて面積で割ったら?
十分細かく分割を取っておいて
サンプル点を十分多く取っていけば
大数の法則で
期待した値にぐいぐい集まってくるはずだし

895:132人目の素数さん
20/03/18 16:16:35.57 Tu49ygg5.net
>>847
レスありがとうございます。
x,y,z を 極形式にして⊿θ ⊿φの範囲にある数が一様かどうかみればいいんだな。

896:132人目の素数さん
20/03/18 21:31:14.71 Tu49ygg5.net
直交座標から極座標のθφを出して、それをグラフにしてみました。
URLリンク(i.imgur.com)
両端が疎に見えます。
グリッドを作ってそこに含まれる点を数えてその分布をみればいいのかな?
どの程度のばらつきなら、一様分布とみなせるのかと考えるとふりだしに戻る気がする。

897:132人目の素数さん
20/03/19 01:13:20 HdgduOXs.net
辺の長さが


898:全て有理数の多角形において、少なくとも2つ以上の内角[rad]は無理数であることを示せ.



899:132人目の素数さん
20/03/19 01:36:55 KrhQLEng.net
>>848
ΔθΔφの囲む面積はcosθ ΔθΔφだよ
θが南北でΔθの幅の中央の値ね
点の個数をこれで割らないと一定にならない
ΔθΔφが一定ならcosθで割れば良い

900:132人目の素数さん
20/03/19 01:48:15 mXsnD9nM.net
>>819
 0.1196797201367540・・・・

901:132人目の素数さん
20/03/19 02:03:39 KrhQLEng.net
>>849
>どの程度のばらつきなら、一様分布とみなせるのかと考えるとふりだしに戻る気がする。
Δθ=π/n
Δφ=2π/m
つまり球面をnm個の領域に分割した場合(m,n固定)
一様分布ならサンプルN点でその領域内にあるのはNπcosθ/2mn個だろうから
数え上げてM点ならΣ(M-Nπcosθ/2mn)^2/mnがN→∞で次第に0に近づく(大数の法則)ことを見るとか?

902:132人目の素数さん
20/03/19 02:07:37.40 KrhQLEng.net
>>849
>両端が疎に見えます。
横軸がθとすると
縦方向にcosθを掛けて点をプロットすれば良い
それで0≦φ≦cosθの領域内に均一に見えたらOK

903:132人目の素数さん
20/03/19 08:37:27 XGan5JrS.net
>>849
これって>821と逆のことをやっているだけのような気がするな。
一様分布する球面上の点を極形式で表示したときに緯度・経度が一様分布はしないんだろうな。

904:132人目の素数さん
20/03/19 09:28:52 XGan5JrS.net
>>854
数理を理解できないままにグラフ化すると

plot(θ,φ*cos(θ),bty='n',pch='.',xlab='θ(北極点からのラジアン)' ,,ylab='φ(経度)*cos(θ)')

URLリンク(i.imgur.com)

理解が足りないので断念。

905:132人目の素数さん
20/03/19 09:32:03 KrhQLEng.net
>>856
θを北極点からのにするなら
sinθ掛けて

906:132人目の素数さん
20/03/19 09:35:45 KrhQLEng.net
>>855
極に近い方がずっと狭くなるからね
球面の表面積は円柱の側面積と同一であるという
2000年前から知られている原理からすると
xyzに落とし込んでもそれぞれの座標上で一様分布になる
これは>>836
URLリンク(i.imgur.com)

907:132人目の素数さん
20/03/19 10:39:50.31 BW7TgbOd.net
>>850
リンデマンの定理より有理数q≠0に対して e^(iq) が超越数であることから従う

908:132人目の素数さん
20/03/19 10:52:58.05 XGan5JrS.net
>>857
θとφの定義は下図に準拠
URLリンク(physics.thick.jp)
rm(list=ls())
vertex <- function(r=1){
x=runif(1,-1,1) # x ~ 一様分布[-1,1]
phi=runif(1,-pi,pi) # φ ~ 一様分布[-π,π]
y=sqrt(1-x^2)*cos(phi) # √(1-x^2)*cos(φ)
z=sqrt(1-x^2)*sin(phi) # √(1-x^2)*sin(φ)
r*c(x,y,z)
}
# 直交座標を極座標に
c2p <- function(xyz){ # (x,y,z) -> (θ,φ) Cartesian 2 Polar
x=xyz[1];y=xyz[2];z=xyz[3]
r=sqrt(x^2+y^2+z^2) # =1になるx,y,zの組合せ
theta=acos(z/sqrt(x^2+y^2+z^2)) # = acos(z) [0,π]の値
phi=ifelse(y>0,acos(x/sqrt(x^2+y^2)), # y>0ならφ < π
2*pi-acos(x/sqrt(x^2+y^2)))# y<0ならφ > π
c(theta,phi)
}
n=1e5
vtx=replicate(n,vertex()) # n個の点を作る
vtx=replicate(n,vertex()) # n個の点を作る
v=t(vtx) # 転置してn行3列(x,y,z)に
head(v,3) ; tail(v,3)
vp=apply(v,1,c2p) # 各行毎にx,y,z -> θ,φに変換
tp=t(vp) # theta θ, phai φ 転置してn行2列(θ,φ)に
fn <- function(x){ # 0<=φ & φ<=sin(θ)を満たすかを返す
θ=x[1]
φ=x[2]
0<=φ & φ<=sin(θ)
}
tp1=tp[apply(tp,1,fn),] # fnがTRUEになるθ,φを抽出して
θ=tp1[,1]
φ=tp1[,2]
plot(θ,φ*sin(θ),bty='n',pch='.', xlab='θ(北極点からのラジアン)',ylab='φ(経度)*sin(θ)')
# グラフ化
URLリンク(i.imgur.com)
正弦波が描出されただけのような


909:?



910:132人目の素数さん
20/03/19 10:54:23.75 /Ts8dWJZ.net
>>859
素晴らしい
正解です

911:132人目の素数さん
20/03/19 10:58:32.26 XGan5JrS.net
>>852
>844のシミュレーション結果に相当する結果ですね。
計算法はさっぱり思いつかないけどw

912:132人目の素数さん
20/03/19 13:39:41 KrhQLEng.net
>>860
>正弦波が描出されただけのような?
点の密度が正弦波の下でどこでも一定に見えるでしょ
だから球面上で一様分布だってことだよ
さらに厳密性のために
点の密度が一定かどうかを検定するには
十分細かく分割して
一様分布なら1つの区画内にあるはずの点の個数の平均を計算しておいて
それと実測値との差の2条の平均(分散)でできるんじゃないかなあ

913:132人目の素数さん
20/03/19 13:43:34 KrhQLEng.net
>>860
>正弦波が描出されただけのような?
あれ?
正弦波の0~πの部分と違うな
上に凸なのに両端近くに変曲点がある
なんで?

914:132人目の素数さん
20/03/19 14:42:09.63 lL/ZGWr/.net
任意の実数に到達できるような関数電卓は存在するか?
関数電卓は、入力は整数で有限個の関数を持っており計算速度は無限大であるとする。

915:132人目の素数さん
20/03/19 16:40:30 XGan5JrS.net
球面に一様分布らしき点を5000個発生させて、
各々の点でθが5°の球冠面にその点以外にどれだけの点が含まれるかを算出させてみた。
URLリンク(upload.wikimedia.org)
中央値9 平均9.56 標準偏差3.14という値になった。

> summary(dots) ; sd(dots)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 7.000 9.000 9.556 12.000 23.000
[1] 3.148086

ヒストグラムだと
URLリンク(i.imgur.com)

# 球面一様分布 c(x,y,z)
vertex <- function(r=1){
x=runif(1,-1,1) # x ~ 一様分布[-1,1]
phi=runif(1,-pi,pi) # φ ~ 一様分布[-π,π]
y=sqrt(1-x^2)*cos(phi) # √(1-x^2)*cos(φ)
z=sqrt(1-x^2)*sin(phi) # √(1-x^2)*sin(φ)
r*c(x,y,z)
}

n=5000
vtx=t(replicate(n,vertex())) # n個の点x,y,zをつくる
rgl::plot3d(vtx[,1],vtx[,2],vtx[,3], col="slateblue")

Theta=(pi/180)*5
onCap <-function(x,y,theta){
acos(x %*% y) < theta # ベクトルの内積の逆余弦がtheta未満なら球冠上にある
}

hmonCap<- function(j){
count=0
for(i in (1:n)[-j]){
count = count + onCap(vtx[j,],vtx[i,],Theta)
}
return(count)
}
dots=sapply(1:n,hmonCap)
summary(dots) ; sd(dots)
hist(dots) ; table(dots)
BEST::plotPost(dots)

916:132人目の素数さん
20/03/19 16:45:37 XGan5JrS.net
極に分布が偏る 
# 角度Θ,Φを一様分布で選らんで
だと

> summary(dots) ; sd(dots)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 6.0 10.0 18.7 17.0 139.0
[1] 26.50699

標準偏差が大きいので一様とは呼べない。

ヒストグラムを描くとURLリンク(i.imgur.com)

917:132人目の素数さん
20/03/19 17:03:25 XGan5JrS.net
>>863
球面上の面積を一定にしてグリッドを描いてその中の点を数えるプログラムはできそうにないので断念して、
上記のように散布した点の周りに何個の点があるのかを数えるのに変えました。
色々と助言ありがとうございました。

918:132人目の素数さん
20/03/19 17:07:02 XGan5JrS.net
>827の
正方形内で乱数x,yを発生させて r^2-(x^2+y^2)が負になるのは除外だと

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 9.00 13.00 12.58 16.00 33.00
[1] 5.694825

標準偏差5.69と前二者の間になった。 まあ、直感と合致した感じ。

919:132人目の素数さん
20/03/19 19:05:16 KrhQLEng.net
>>819
計算教えて

920:132人目の素数さん
20/03/19 19:13:01 uD33tvXq.net
>>869

単位球の表面積は4π。この球を平面で切り、(切断面を除く)表面積を3πとπに分けるためには、
平面と球の中心の距離はいくらか? 答えは
y=√(1-x)^2、π=∫[a,1]2πy√(1-(dy/dx)^2)dx を解いて、a=1/2

球と平面の距離が1/2なら、切断面の半径は(√3)/2

このことから、球面上を一様に分布した点があり、それを、赤道面上に投影すると、
半径(√3)/2の円内に半分の点があり、その外側のドーナツ型の部分に半分の点がなければならない。

>>827 の方法では、半径(√2)/2の円の内外で二分されるため、球面上を一様に分布した点とはならないと思われる。

ではどうすればよいかというと、[-1,1]の一様乱数x,y,zを発生させ、
x^2+y^2+z^2が1を超えたら破棄、1以下なら、X=x/r、Y=y/r、Z=z/r、r=√(x^2+y^2+z^2)
というのが、シンプルだと思われる。

921:132人目の素数さん
20/03/19 19:41:52 KrhQLEng.net
>>830
>xyzで球の外を除外して正規化しても本質は同じだな
これね
スマン意図伝わってなかったかも知らん

922:132人目の素数さん
20/03/19 19:49:41 uD33tvXq.net
>>871
一行の中に、二カ所もひどい間違いしてました。訂正します。
×:y=√(1-x)^2、π=∫[a,1]2πy√(1-(dy/dx)^2)dx を解いて、a=1/2
○:y=√(1-x^2)、π=∫[a,1]2πy√(1+(dy/dx)^2)dx を解いて、a=1/2

923:132人目の素数さん
20/03/19 20:45:46.04 XGan5JrS.net
>>871
[-1,1]の一様乱数x,y,zを発生させ、
x^2+y^2+z^2が1を超えたら破棄、1以下なら、X=x/r、Y=y/r、Z=z/r、r=√(x^2+y^2+z^2)
でやってみました。
>866とほぼ同じ平均と標準偏差になりました。
  Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 7.000 9.000 9.585 12.000 24.000
[1] 3.193939

924:132人目の素数さん
20/03/19 21:44:15 uD33tvXq.net
球面を、二つの平面、x=aとx=a+hでカットしたときの帯状の曲面の面積は、
カットする位置によらず、幅hにのみ依存します。
>>866はこの性質を利用した方法なので、球面一様分布を生成する正しい方法だと思います。
一方、>>827の方法は、正しくないという指摘です。

925:132人目の素数さん
20/03/19 23:30:46.19 nprfnGEx.net
数aの問題です。
【300人を対象に「二つのテーマパークpとqに行ったことがあるか」というアンケートをおこなったところ、pに行ったことがある人が147人、qに行ったことがある人が86人、どちらにも行ったことのない人が131人であった。
 (1)両方に行ったことのある人の数を求めよ。
 (2)どちらか一方にだけ行ったことのある人の数を求めよ。】 という問題です。答えを見てもなかなか理解が出来ませんでした。

926:132人目の素数さん
20/03/19 23:42:24.02 8QNcFC1P.net
↑の問題書く板を間違えてしまいました。失礼しました。

927:132人目の素数さん
20/03/19 23:43:46.42 8QNcFC1P.net
↑板ではなくてスレです。初心者のため用語がごちゃごちゃになってしまいました。何度も失礼しました。

928:132人目の素数さん
20/03/20 00:03:06.45 p5Mf5Wxl.net
>>876
(1)147+86-(300-131)=64
(2)147-64=83 86-64=22から83+22=105
答が理解できない理由が謎。

929:132人目の素数さん
20/03/20 00:11:49.72 p5Mf5Wxl.net
>>875
緯度でθ+Δθでやると帯の面積はΔθだけなくてθの値にも依存しますね。

930:イナ
20/03/20 01:13:13.31 8G8tjVXV.net
>>843
>>817
面白い問題と言うからにはこのぐらいのことは起こらないとね。
半径1の球に内接する正四面体の一辺をaとして、
その体積はa^3√2/12
4つの頂点を無作為にとったとき、凸包の体積Vはちょうど一辺が1の正四面体の体積になるとか。
a=1のときV=√2/12
=0.11785113……

931:132人目の素数さん
20/03/20 03:34:41 BTmsQo5f.net
>>881
稀代の馬鹿

932:132人目の素数さん
20/03/20 05:33:36.40 5OgbmOf4.net
>>772
面白い問題おしえて~な 31問目
スレリンク(math板:859番)

933:132人目の素数さん
20/03/20 05:34:37.30 5OgbmOf4.net
誤爆orz

934:イナ ◆/7jUdUKiSM
20/03/20 06:59:12 8G8tjVXV.net
\\\\\\\\\\\
\\\`∩∩、/、\\\\
\\⊂(_ _ )`⌒つ、\\
\\\\\`υ、\\\\
\\\\\\\\\\\
\\\\\\\\\\\
\\\`前>>881\\\\\\\\\\\\\\\\\\\\>>817 (1/2)^3=1/8=0.125 \\\\\\\\\\\\\\\\\\\\\

935:イナ
20/03/20 07:55:00.46 8G8tjVXV.net
>>885
∵半径1の球表面にA,BをとるときABは0~2の値を無作為にとるが、そのあいだを動かしたときもっともとり得る値はAB=√2
同様にAC=√2,BC=√2
もっともとり得る


936:△ABCの面積は、 △ABC=(√3/4)(√2)^2 =√3/2 △ABCの重心をGとして、 四面体ABCDの△ABCを底面とした頂点Dの高さDGは0も含めいろいろな値を無作為にとるが、もっともとり得る値は、球の中心をOとしてOGと等しい。 つまり四面体ABCDの体積のもっともとり得る値は、3つの稜線のおのおのが直交し長さが1の三角錘の体積と等しい。



937:イナ ◆/7jUdUKiSM
20/03/20 08:04:52 8G8tjVXV.net
>>886訂正。
>>817
四面体ABCD=(1/3)(1/2)・1
=1/6
=0.166……
>>886

938:132人目の素数さん
20/03/20 18:27:18 lC3HBZ24.net
888げとー  (パチスロか?)

>>887
 OA,OB,OCが直交すればOABCの体積は 1/6
 >>841 と一致・・・ (正しくはなかろうが)

939:イナ ◆/7jUdUKiSM
20/03/21 10:38:50 gmytXLCF.net
∥∩∩ ∥ □ ∥○?∇
((-_-)∥  ∥Δ>>888
(っ⌒⌒゙  。∥╂─╂
■`(_)_)ц~ ∥╂─╂
\■υυ■_∩∩、\\\
\\\\⊂(_ _ )`⌒づ
\\\\\\\`υ、\\\\\\\\\\`球表面にもっともとり得る2点目、3点目を順にとると任意の2点は球の中心に対して直角になる。
>>887あとは4点目をどうとるか。3点で決まる平面と平行な、球体を切った任意の円盤の中で、もっともとり得る円盤は球の中心を通るやつ。この円盤と球表面の共有線である円周上に4点目があるときの四面体の体積は、稜線が直角な三角錘と同体積。
稜線の長さは球の半径=1だから三角錘の体積(1/3)Shは、
(1/3)(1/2)・1=1/6
=0.166……
あってると思うけど。

940:132人目の素数さん
20/03/21 19:43:53 4jcynL59.net
>>817
数値積分による解
In[1]:= S[t1_,t2_,p_] := Simplify[Norm[Cross[{Cos[t1]Cos[+p],Cos[t1]Sin[+p],Sin[
t1]}-{0,0,-1},{Cos[t2]Cos[-p],Cos[t2]Sin[-p],Sin[t2]}-{0,0,-1}]]/2]
In[2]:= d[t1_,t2_,p_] := Simplify[Det[{{Cos[t1]Cos[+p],Cos[t1]Sin[+p],Sin[t1]},{
Cos[t2]Cos[-p],Cos[t2]Sin[-p],Sin[t2]},{0,0,-1}}]/(2 S[t1,t2,p])]
h[d_] := Simplify[(Integrate[Cos[t3](d-Sin[t3]),{t3,-Pi/2,ArcSin[d]}]+Integrate[Cos[t3](Sin[t3]-d),{t3,ArcSin[d],Pi/2}])/Integrate[Cos[t3],{t3,-Pi/2,Pi/2}]]
In[3]:= h[d_] := Simplify[(Integrate[Cos[t3](d-Sin[t3]),{t3,-Pi/2,ArcSin[d]}]+In
tegrate[Cos[t3](Sin[t3]-d),{t3,ArcSin[d],Pi/2}])/Integrate[Cos[t3],{t3,-Pi/2,Pi/
2}]]
In[4]:= NIntegrate[Cos[t1]Cos[t2]h[d[t1,t2,p]]S[t1,t2,p]/3,{p,0,Pi/2},{t1,-Pi/2,
Pi/2},{t2,-Pi/2,Pi/2}]/Integrate[Cos[t1]Cos[t2],{p,0,Pi/2},{t1,-Pi/2,Pi/2},{t2,-
Pi/2,Pi/2}]
Out[4]= 0.11968

941:イナ
20/03/21 21:28:05.69 gmytXLCF.net
>>889
>>881少数第三位を四捨五入すると、
V=0.12

942:132人目の素数さん
20/03/21 22:05:25 RyI2Q/uv.net
>>891
少数第1位を四捨五入すると、V=0

943:132人目の素数さん
20/03/22 10:38:19 fXf64y18.net
>>890 の式を整理して精度を上げてみる
In[1]:= NIntegrate[Cos[t1]Cos[t2]
(2(Sin[2p]Cos[t1]Cos[t2])^2+(Cos[p](-Cos[t1]+Cos[t2]+Sin[t1-t2]))^2+(Sin[p](Cos[t1]+Cos[t2]+Sin[t1+t2]))^2)
/(24Pi Sqrt[(Sin[2p]Cos[t1]Cos[t2])^2+(Cos[p](-Cos[t1]+Cos[t2]+Sin[t1-t2]))^2+(Sin[p](Cos[t1]+Cos[t2]+Sin[t1+t2]))^2])
,{p,0,Pi/2},{t1,-Pi/2,Pi/2},{t2,-Pi/2,Pi/2}, WorkingPrecision->12, PrecisionGoal -> 11]
Out[1]= 0.119679720136

944:132人目の素数さん
20/03/23 03:30:35 uvHIelYA.net
これってパソコンなしでは解けませんよね?

【富山県最強伝説】新型コロナウイルスPCR検査件数 54人 陽性0人
スレリンク(newsplus板)

ある集団から54人を無作為に選んでPCR検査したら陽性0であったとして
PCR検査の感度0.7 特異度0.9としてこの集団の有病率の期待値と95%信頼区間を求めよ。

945:132人目の素数さん
20/03/23 11:46:03 MEkmhbu9.net
>>893
数値的にしか解けないの?

946:132人目の素数さん
20/03/23 15:15:51 9TP9mpqz.net
Rの標準ライブラリは抽象代数計算ないから標準ライブラリだけなら数値積分しかできないだろな。

947:132人目の素数さん
20/03/23 15:27:44 mjeu1Sts.net
>>895
前計算してた人�


948:盾驍� 確率密度関数与えられるから あとは体積の計算して平均出すだけだけど 式は書けても計算ができそうもない



949:132人目の素数さん
20/03/23 22:00:13.53 GiYqQssY.net
半径1の半円の内部に閉曲線を描く
このとき(閉曲線が囲う領域の面積)/(閉曲線の長さ)の最大値を求めよ

950:イナ ◆/7jUdUKiSM
20/03/23 23:31:07 dYUW2zOC.net
>>891
>>898
閉曲線で囲まれた領域が楕円のとき、
短軸1,長軸1/√2
面積π(1/2)(1/√2)
=π/2√2
周長2π√(1/2)√(1/√2)
=π√√2
面積/周長=1/2√2・√√2
=0.297301779……
蛹で越冬する感じか。

951:132人目の素数さん
20/03/23 23:36:36 GiYqQssY.net
>>899
不正解
それなら半円そのもの
π/(2(π+2))=0.3055...
の方が大きい

952:イナ ◆/7jUdUKiSM
20/03/23 23:44:31 dYUW2zOC.net
>>899
>>900半円は直線が入ってるら。不適だに。

953:132人目の素数さん
20/03/23 23:53:47.84 HQzFbrB9.net
>>901
いくらでも半円に近づけるから比が0.3055...に近い閉曲線が描ける
よって>>899は最大値ではない
でも内部だと確かにsupはあってもmaxが無いことになってしまうので>>898は改題します すみません
「半径1の半円の部分集合として閉曲線を描く
このとき(閉曲線が囲う領域の面積)/(閉曲線の長さ)の最大値を求めよ」
ただし、ここで言う半円は{(x,y)∈R^2 | x^2+y^2≦1 ,y≧0}のことです

954:132人目の素数さん
20/03/24 00:23:44 bCLJqQcJ.net
l = (sinθ/(1+sinθ))(θ+π/2) + (sinθ'/(1+sinθ'))(θ'+π/2) + cosθ/(1+sinθ) + cosθ'/(1+sinθ') + (π-θ-θ')
S = (θ/2)(sinθ/(1+sinθ))^2 + (θ'/2)(sinθ'/(1+sinθ'))^2 + (1/2)sinθcosθ/(1+sinθ)^2 + (1/2)sinθ'cosθ'/(1+sinθ')^2 + (π-θ-θ')/2
maximize S/l where θ,θ'≧0, θ+θ'≦π
sssp://o.5ch.net/1mukb.png

955:132人目の素数さん
20/03/24 01:36:19.20 TnHQvRcs.net
>>896
レスありがとうございます。
こういうアルゴリズムになるのかと愚考しています。
事前分布を選択する(例. 有病率は高々10%として(0.0.1]の一様分布とする)、
陽性確率は真陽性確率と偽陽性確率の和、
陽性数はこの確率で二項分布、

956:132人目の素数さん
20/03/24 02:07:58.87 cfg1hqI2.net
>>897
具体的には球面上の2変数の座標系stがあって
st平面上の領域Dと球面が(x,y,z)=f(s,t)で対応しているとき
球面上の一様分布を与えるst2変数の密度関数g(s,t)が存在し
dS/4π=g(s,t)dsdt
となる
頑張ればf,gは具体的な式で与えることは出来る
球面上の4点をp1=f(s1,t1)・・・p4=f(s4,t4)で表して
これら4点を頂点とする4面体の体積を表す関数V(p1,p2,p3,p4)を
何とか式で表せはするから
∬∬∬∬V(f(s1,t1),・・・,f(s4,t4))g(s1,t1)・・・g(s4,t4)ds1dt1・・・ds4dt4
を計算したら良いだけ

957:イナ
20/03/24 02:44:18.74 G+Ea7M2l.net
>>901
>>902
y軸を挟んで(0,0)に中心をあわせた半径1,中心角45°の扇形を1対並べ、それを両サイドから挟むように半径1/2,中心角45°の扇形を並べ、その左右端に半径1/4,中心角45°の扇形を弧が滑らかにつづくようにくっつけて並べ、
(0,1),(±1/√2,1/√2),(±1/2±1/2√2,1/2√2),(±3/4√2±1/4,1/4√2),(0,0)の8点が滑らかにつづくように結ぶ。
点(0,0)を挟む円弧の中心を(0,t),中心角をθとおくと、
正弦定理より、
sinθ=(3/2√2+1/2)/2t
ピタゴラスの定理より、
(3/4√2+1/4)^2+(t-1/4√2)^2=t^2
t=(3√2+3)/4
sinθ=(4-√2)/6
=0.430964406……
θ=25.52877935……
面積と周長をともに4つに分けて求める。
いちばん大きな扇形は2つあわせて面積π/4,周長部分π/2
2番目の扇形は2つあわせて面積π/16,周長部分π/4
3番目の扇形は2つあわせて面積π/64,周長部分π/8
亀の腹のようなy軸に線対称な残りの面積をsとおくと、
面積/周長=(π/4+π/16+π/64+s)/{π/2+π/4+π/8+2πt(θ/2π)}
=(21π/64+s)/(7π/8+tθ)
=(21π/64+s)/{7π/8+(1+√2)(3/4)θ}
=(21π/8+8s)/{7π+6(1+√2)θ}
=(21π+64s)/{56π+48(1+√2)θ}
sは扇形半分から三角形を3つ引いて2倍で出る。
θを度数のまま代入してよいかは気になる。

958:132人目の素数さん
20/03/24 06:11:35.52 MOWxPvKi.net
>>903
Sの式で (θ/2) の所は (θ+π/2)/2、 (θ'/2) の所は (θ'+π/2)/2 では?
Steinerに習って対称性を仮定しますた。
 l(θ) = 2(θ+π/2){sinθ/(1+sinθ)} + 2cosθ/(1+sinθ) + π -2θ,
 S(θ) = (θ+π/2){sinθ/(1+sinθ)}^2 + sinθcosθ/(1+sinθ)^2 + π/2 -θ.
θで微分して
(d/dθ)(S/l) = {2 - (θ+π/2)cosθ/(1+sinθ)}{π・cos(2θ) -sin(2θ) -2θ}
  /{4(1+sinθ)(π/2 -θ +π・sinθ +cosθ)^2},
ここで
 2 - (θ+π/2)cosθ/(1+sinθ) >0,  (0<θ<π)
だから
 π・cos(2θ) - sin(2θ) -2θ = 0,
 θ = 0.4827200003884401212939116114621300267
このとき最大値
 (S/l)max. = 0.31702857011315030244270875179918713
これは、半円の値 π/(2(π+2)) = 0.3055077351758286   >>900
より大きい。

959:132人目の素数さん
20/03/24 06:37:12.28 MOWxPvKi.net
(補足)
 θ。 = 27.65781870881107747733891798287807゚
(S/l)max. = (小円の半径) = sinθ。/(1+sinθ。)
 = 0.31702857011315030244270875179918713
(原点~中心の距離) = 1/(1+sinθ。)
 = 0.68297142988684969755729124820081287

960:132人目の素数さん
20/03/24 07:06:20.74 cfg1hqI2.net
>>905
まあ1点は固定して考えて良いし
2点目も1点目を通る大円で考えて
その上で一様分布で取れば良い(1次元)
3点目は半球内で一様に取るかな(2次元)
4点目は球上で一様に(2次元)
積分は5変数でよいかな

961:132人目の素数さん
20/03/24 07:29:45.50 MOWxPvKi.net
(続き)
 l(θ。) = 1.48625008894369638043092594627639431
 S(θ。) = 4.68806356604781887658254751068492774
 S/l = 0.31702857011315030244270875179918713
また、θ=30° のとき
 (小円の半径) 1/3,
 (原点~中心の距離) 2/3,
 l(30°) = 2(3√3 +5π)/9 = 1.472358208
 S(30°) = (3√3 +11π)/27 = 4.645359042
 S/l = (3√3 +11π)/{6(3√3 +5π)} = 0.31695251
θ = 0 では
 l(0) = π+2 = 5.141593
 S(0) = π/2 = 1.570796
 S/l = 0.305507735

962:132人目の素数さん
20/03/24 08:31:16.86 JQHHwetB.net
>>907
素晴らしい
数値としては0.317028570...で正解ですが、
なぜその形だと最大になるのか証明も欲しいところです
ヒントを言うと、あるパラメータ付き作用素の固有値をレイリー商により求めて、極限を飛ばすと(面積)/(周長)になることを利用します

963:132人目の素数さん
20/03/24 11:07:46.16 v/fj8fVi.net
>>911
閉曲線が囲む図形は
・凸集合として良い
・尖ってる部分が無いとして良い(つまり閉曲線は微分可能)
・半円の境界に接していない部分は、少なくとも局所的に曲率が等しいとして良い
ことから>>903の形を仮定していいはず

964:132人目の素数さん
20/03/24 11:31:02.15 MOWxPvKi.net
>>910
参考
-------------------------------------------------------------
θ  r(θ)     l(θ)       S(θ)      S/l
-------------------------------------------------------------
0° 0.000000000  π+2       π/2       0.30550773518
15


965:° 0.205604647  4.906228243054  1.544232748162  0.31474947183 30° 0.333333333  2(5π+3√3)/9   (11π+3√3)/27  0.31695250990 45° √2 -1     4.351158878394  1.361230101991  0.31284311606 60° 2√3 -3    4.013126310452  1.211844939375  0.30197029588 75° 0.491333810  3.616783365011  1.021692472380  0.28248649954 90° 0.500000000  π        π/4       0.25000000000 -------------------------------------------------------------



966:132人目の素数さん
20/03/24 15:59:26 JQHHwetB.net
>>912
凸なのと、曲率が局所一定はいいと思うのですが、微分可能なのはどうしてでしょうか

967:132人目の素数さん
20/03/24 18:16:19.81 v/fj8fVi.net
>>914
尖ってる部分の外角をθとして、こんな風にθ/2の傾きの直線で切った時のlとSの変化を考えると、
切る長さxに対してlの減少は 2x(1-cos(θ/2)) (as x→+0)で近似できるのに対し、
Sの減少は (x^2*sinθ)/2 (as x→+0) で近似できる。
よって、x>0を十分小さく定めれば、より大きい S/l を実現できる。
あと忘れてたけど
・最大の S/l を与える閉曲線が存在する
も言う必要あるな…大したことないかもだけど
URLリンク(o.5ch.net)

968:イナ
20/03/24 18:22:26.05 G+Ea7M2l.net
>>906
ピタゴラスの定理より、
(3/4√2+1/4)^2+(t-1/4√2)^2=t^2
t=(3√2+3)/4
=3(1+√2)/4
=1.81066017……
t^2=9(3+2√2)/16
sinθ=(4-√2)/6
=0.430964406……
θ=25.52877935……
面積と周長をともに4つに分けて求める。
いちばん大きな扇形は2つあわせて面積π/4,周長部分π/2
2番目の扇形は2つあわせて面積π/16,周長部分π/4
3番目の扇形は2つあわせて面積π/64,周長部分π/8
亀の腹のようなy軸に線対称な残りの面積は等脚台形,鈍角三角形,うすい欠円からなる。
面積=π/4+π/16+π/64+πt^2θ/360°
+(1/4√2+1/4)(1/4√2)・2
+(1/2√2+1/4)(1/4√2)
-t(3/4√2+1/4)
周長=π/2+π/4+π/8+2πt(θ/360°)
=7π/8+{3(1+√2)π/2}(θ/360°)

969:132人目の素数さん
20/03/24 18:42:09.43 JQHHwetB.net
>>915
あーなるほど...
たしかに角を小さく切る、つまり
xを(S/l)(4(1-cos(θ/2))/sinθより十分小さく取ればよりよい比が出るのか
ありがとうございました
Maxの存在ですが、そもそも閉曲線の集合を具体的に言ってなかったんですが、リプシッツ閉曲線の集合とすればおそらく存在は言えます

970:イナ
20/03/24 19:09:08.84 G+Ea7M2l.net
>>916
面積=π/2
周長=2π/2+2=π+2
とすると、閉曲線はいくらでも半円に近づけられるんじゃないか?
面積/周長=π/(2π+4)
=3.05507735……

971:イナ ◆/7jUdUKiSM
20/03/25 17:58:40 YcAWd6vy.net
>>918直線も曲線のうち。
半径1の半円のコーナー2か所を半径rの円弧で円くカットするとき、
半円のカットされる円弧部分に対する中心角をθとすると、
(1-r)sinθ=r
sinθ=(1+sinθ)r
r=sinθ/(1+sinθ)
1-r=1/(1+sinθ)
r^2=sin^2θ/(1+sinθ)^2
面積=π/2-θ+(1-r)rcosθ+πr^2(π+2θ)/2π
=π/2-θ+(1-r)rcosθ+r^2(π/2+θ)
=π/2-θ+sinθcosθ/(1+sinθ)^2+(π/2+θ)sin^2θ/(1+sinθ)^2
周長=π-2θ+2(1-r)cosθ+2πr(π+2θ)/2π
=π-2θ+2(1-r)cosθ+r(π+2θ)
=π-2θ+2cosθ/(1+sinθ)+(π+2θ)sinθ/(1+sinθ)
面積/周長={π/2-θ+sinθcosθ/(1+sinθ)^2+(π/2+θ)sin^2θ/(1+sinθ)^2}/{π-2θ+2cosθ/(1+sinθ)+(π+2θ)sinθ/(1+sinθ)}
={(π/2-θ)(1+sinθ)^2+sinθcosθ+(π/2+θ)sin^2θ}/{(π-2θ)(1+sinθ)^2+2cosθ(1+sinθ)+(π+2θ)sinθ(1+sinθ)}
θで微分し、分子=0とすると、
θ=27.6578187……°

972:132人目の素数さん
20/03/25 18:54:40 mDuON5Tg.net
>>919
正解だけどもう>>907で解答出てます

973:132人目の素数さん
20/03/25 20:06:33.01 8IQhbp71.net
いつもの芸風

974:132人目の素数さん
20/03/25 21:25:32.84 jmNOx22O.net
>>921
正確がでてからも延々と誤答を連発するのが芸風だったようなw

975:イナ ◆/7jUdUKiSM
20/03/25 23:17:09 YcAWd6vy.net
.、、,,
彡`e)⌒~っ
⌒~っ
ιγ)
`彡´
υ´前>>919別解を探ってんだよ。

976:132人目の素数さん
20/03/28 04:00:21.75 H8zc980P.net
単位正方形を面積0.21未満の三角形5つで分割せよ

977:132人目の素数さん
20/03/28 04:01:22.29 H8zc980P.net
正方形は面積の等しい奇数枚の三角形では分割出来ないことを証明せよ

978:132人目の素数さん
20/03/28 05:11:12.48 z8xV0i7R.net
>>924
正方形を座標 [0,1]×[0,1] におく。
アドホックだけど
周上の3点 A(0,1), B(0.4,0), C(1,0.59) を考えると
線分ABが面積0.2の三角形を切り出す。
線分ACが面積0.205の三角形を切り出す。
線分BCが面積0.177の三角形を切り出す。
残った三角形ABCは面積が0.418だから、AからBCの中点へ線分を引くとこれを面積0.209ずつに等分する。

979:132人目の素数さん
20/03/28 05:28:13.83 H8zc980P.net
>>926
素晴らしい
正解です

980:132人目の素数さん
20/03/28 05:40:49.83 H8zc980P.net
ちなみに
「正方形を5つの三角形で分割したとき、一番大きな三角形の面積の下限」
については私は答えを知りません
おそらく>>926タイプが最小だと思うけど証明出来ません

981:132人目の素数さん
20/03/28 08:19:46 BJlezchp.net
n(=10)人の中から無作為にm(=2)人選んだらその中に少なくとも一人の感染者がいた。
全体で何人の感染者がいるかの期待値を求めよ。

5.345794人であってる?

982:132人目の素数さん
20/03/28 08:34:15 BJlezchp.net
>>929
4.324324人かな?

983:132人目の素数さん
20/03/28 08:40:28.80 BJlezchp.net
いや、6.5人じゃないかな?

984:イナ
20/03/28 09:18:03.03 zOKjl8OR.net
>>923
>>929違うと思う。
少なくとも1人ということは、2人中1人か2人が感染している。
2人中1.5人が感染しているから、10人だと、
1.5(10/2)=7.5
∴7人か8人が感染している。

985:132人目の素数さん
20/03/28 10:07:11 GB5uxKLH.net
>>924
周上の3点 A(0, 1) B(√2 -1, 0) C(1, 2-√2) を考えると
4つの?が合同になり (√2 -1)/2 = 0.20710678 > 1/5
残った直角2等辺三角形は (√2-1)^2 = 0.171572875

一番小さい三角形の面積の範囲は 0.1682~0.18 ですかね

986:132人目の素数さん
20/03/28 10:34:16 BJlezchp.net
6.5の計算式

x=0:n # 感染者数:x, 非感染数:n-x
pmf=1- choose(n-x,m)/choose(n,m) # 感染者がx人のときにm人中誰かが感染している確率 = 1 - (m人全員非感染の確率)
pdf=pmf/sum(pmf) # 確率密度関数化して
(E=sum(x*pdf)) # 期待値を計算

987:132人目の素数さん
20/03/28 11:11:34 BJlezchp.net
>>932
2人の感染数の期待値1.5に固定ではなくて全体の感染率に依存するんじゃないの?

# p:感染確率
p1=2*p*(1-p) # 一人だけ感染確率
p2=p^2 # 二人とも感染確率
(1*p1+2*p2)/(p1+p2) # 感染人数の期待値

1.5になるのはp=2/3のとき。

988:132人目の素数さん
20/03/29 02:03:38.99 mVS6e59j.net
>>931
ツボの中に黒碁石がx個と白碁石が10-x個入っている確率をQ(x)とし、
黒石がx個の下で2個取って黒がn個である確率は、P(n)=C[x,n]C[10-x,2-n]/C[10,2]
P(1)=C[x,1]C[10-x,1]/C[10,2]=x(10-x)/45、P(2)=C[x,2]C[10-x,0]/C[10,2]=x(x-1)/90
だから、P(n=1,2│黒石=x)=P(1)+P(2)=x(19-x)/90
P(n=1,2かつ黒石=x)=Q(x)P(n=1,2│黒石=x)=Q(x)x(19-x)/90
P(黒石=x│n=1,2)=P(n=1,2かつ黒石=x)/納k=1,10]P(n=1,2かつ黒石=k)
=Q(x)x(19-x)/90/納k=1,10]{Q(k)k(19-k)/90}、ここで、Qが定数なら、
P(黒石=x│n=1,2)=x(19-x)/納k=1,10]{k(19-k)}=x(19-x)/660
xの期待値=納k=1,10]x*x(19-x)/660={19*10*11*21/6-(10*11/2)^2}/660=13/2

989:132人目の素数さん
20/03/29 04:48:03.83 Uzyj10C6.net
面白い問題見つけてきました、けっこう簡単だけども。

n次元実数空間上にn個の点P_1,P_2,…,P_nを、それぞれの座標が
P_1:(1,0,0,…,0)
P_2:(0,2,0,…,0)
P_3:(0,0,3,…,0)

P_n:(0,0,0,…,n)
となるように取る。
P_1~


990:P_nのn個の点で作られる(n-1)次元空間と原点Oの距離をd(n)としたとき lim[n→∞] d(n) を求めよ。 https://twitter.com/StandeeCock/status/1242443303880028161?s=19 (deleted an unsolicited ad)



991:132人目の素数さん
20/03/29 06:28:49.10 aOvcdyIH.net
(n-1)次元空間 (超平面とよぶ) は
 x_1 + (1/2)x_2 + ・・・・ + (1/n)x_n = 1,
で表わされる。
この超平面上の点X (x_1, x_2, ・・・・, x_n) と原点O (0,0,・・・・,0) の距離|OX|の2乗は
 |OX|^2 = Σ[k=1,n] (x_k)2
  ≧ {Σ[k=1,n] (1/k)x_k}^2 / {Σ[j=1,n] 1/jj}  (← コーシー)
  = 1 / {Σ[j=1,n] 1/jj}
  = d(n)^2,
d(n) = {Σ[j=1,n] 1/jj}^(-1/2)
  → {Σ[j=1,∞] 1/jj}^(-1/2)  (n→∞)
  = {ζ(2)}^(-1/2)
  = (√6)/π
  = 0.7796968
面白い!

992:132人目の素数さん
20/03/29 06:44:13.28 aOvcdyIH.net
(n-1)次元空間 (超楕円面とよぶ) は
 (x_1)^2 + {(1/2)x_2}^2 + ・・・・ + {(1/n)x_n}^2 = 1,
で表わされる。
この超楕円面上の点X (x_1, x_2, ・・・・, x_n) と原点O (0,0,・・・・,0) の距離|OX|の2乗は
 |OX|^2 = Σ[k=1,n] (x_k)2
  ≧ Σ[k=1,n] {(1/k)(x_k)}^2
  = 1
  = d(n),
lim[n→∞] d(n) = 1.
面白い!

993:132人目の素数さん
20/03/29 07:59:53.08 mVS6e59j.net
>>392
嘘をついてしまい申し訳ありませんでした
>∴ p(m+1)-pm>0⇔ Σ[m+1≦k≦n-1] 1/k > 1
Σ[m+1≦k≦n-1] 1/k<log((n-1)/m)より、(n-1)/m<eのとき、右辺<1よりp(m+1)<pmなので、
(n-1)/e<mのうち最小でないmは不適だから[n/e]+1より大きいmは不適
Σ[m≦k≦n-1] 1/k>log(n/m)より、n/m>eのとき、右辺>1よりp(m-1)<pmなので、
n/e>mのうち最大でないmは不適だから[n/e]より小さいmは不適
(また、p([n/e]+2)<p([n/e]+1)だからΣ[[n/e]+2≦k≦n-1] 1/k<1で、
Σ[[n/e]+1≦k≦n-1] 1/k<1+1/([n/e]+1)<2)
Σ[[n/e]+1≦k≦n-1] 1/kが1未満のときm=[n/e]で、1以上のときm=[n/e]+1で最大だから、
m=[n/e]+[Σ[[n/e]+1≦k≦n-1] 1/k]のとき最大
このときm/nlog(n/m)<pm<m/nlog(n/m)+1/nだから、pm→1/e

994:132人目の素数さん
20/03/29 08:15:50.52 LkZjh/9V.net
>>936
レスありがとうございます。
多数決で決める事項ではないけど同じ結論の人がいてほっとしました。

995:132人目の素数さん
20/03/29 09:33:52.26 WogCQeQk.net
(謎)
昨日の東京のコロナ陽性者は87人検査して63人陽性であったという。
検査の感度0.6 特異度0.9と仮定して、87人中に感染者は何人と推定されるか?

996:132人目の素数さん
20/03/29 09:43:27.74 WogCQeQk.net
キャバクラ客100人から無作為に5人から検体を採取してこの検体を混合攪拌してコロナ検査したところ陽性であった。
100人のキャバクラ客の陽性数の期待値を求めよ

997:132人目の素数さん
20/03/29 09:45:46.89 WogCQeQk.net
>>943
401/7 になった

998:132人目の素数さん
20/03/29 10:35:41 WogCQeQk.net
>>929
ベイズ的に考えると

n人からm人選んだら少なくとも一人の感染者がいたとする。

Ax: x人の感染者がいる(x=0~n)という事象
B:最低一人の感染陽性判定という事象
Pr[Ax|B]=Pr[B|Ax]Pr[Ax]/Pr[B]
Pr[Ax]:事前確率
Pr[B|Ax]:尤度
Pr[B]:周辺尤度(規格化定数)

求めたい期待値Eは
Σ(x*Pr[Ax|B])/ΣPr[Ax|B] = Σ(x*Pr[B|Ax]Pr[Ax])/Σ(Pr[B|Ax]Pr[Ax])
Pr[Ax]がxにかかわらず定数であれば
E=Σ(x*Pr[B|Ax])/Σ(Pr[B|Ax])

事前確率分布を一様分布と仮定しての計算ということだな。

999:哀れな素人
20/03/30 08:24:59 7yoNMR67.net
↓この問題を初等幾何で解け
【幾何】日本数学オリンピック予選 23
【解説】日本数学オリンピック予選 2009年 問4
URLリンク(www.youtube.com)

1000:132人目の素数さん
20/03/30 14:05:17 zICzxEKY.net
>>946
哀れな素人さん、どうもガロアスレのスレ主です。
面白い問題やね(^^;

1001:132人目の素数さん
20/03/30 15:45:02.93 7S3Fype3.net
(1) s²+s=n^4-n² を満たす整数s, nは存在するか。有限組あるならすべて求めよ
(2) 5^c+s²+s=n^4-n² を満たす整数c, s, n は存在するか。有限組あるならすべて求めよ

1002:132人目の素数さん
20/03/30 16:33:36.40 uxzDymBq.net
(1)
 0 = s(s+1) - nn(nn-1) = (s+nn)(s+1-nn),
∴ s = -nn または s = nn-1.  (無数にある)

1003:132人目の素数さん
20/03/30 17:23:18 uxzDymBq.net
(2) s(s+1) も nn(nn-1) も偶数だから矛盾。

1004:132人目の素数さん
20/03/30 18:15:38 oNI+nbzZ.net
b(x) は奇関数で、aを実数として
b(x)= ∫[0, x] b(u) du + ∫[a, x+a] b(u) du
を満たす。
(1) b(a), b(2a) を求め、
(2) a_n=∫[0, na] b(u) du とする。a_1= ∫[0, a] b(u) du =1 としてa_nをnを用いて表せ。

1005:イナ
20/03/30 23:34:16.95 psAYFPlW.net
>>932
>>948(1)
(s,n)=(3,2),(3,-2),
(0,1),(0,-1),
(-1,1),(-1,-1),
(8,3),(8,-3),
(-9,3),(-9,-3)

1006:132人目の素数さん
20/03/31 10:49:38 NdCHFxJo.net
>>951
b(x) = F(x) + F(x+a) - F(a),
ここに F(x) = ∫[0,x] b(u)du は偶関数。

b(x+a) = - b(-x-a)
 = - F(-x-a) - F(-x) + F(a)
 = - F(x) - F(x+a) + F(a)
 = - b(x),
よって b(x) は周期2aをもつ。

1007:132人目の素数さん
20/03/31 11:05:29 NdCHFxJo.net
ゆえに
b(x) = ∫[0,x] b(u)du + ∫[0,x] b(u+a)du
 = ∫[0,x] b(u)du - ∫[0,x] b(u)du
 = 0,

1008:132人目の素数さん
20/03/31 21:32:31 YPumKBAH.net
半径2の円内に交わりのない単位正方形を8つ詰め込むにはどうしたらよいか

1009:132人目の素数さん
20/03/31 22:52:11 0eySXOLI.net
>>955
x軸の上に、四角を横に三個並べ、その上に同様に三個乗せ、その上に二個を中央に並べる
右下の角は(3/2,0)、中段の右上の角は(3/2,2)、最上段の右上の角は(1,3)だが、
どれも(0,√7/2)からの距離が2を超えないのでここを中心に円を書けばいい

1010:イナ ◆/7jUdUKiSM
20/03/31 23:00:32 DSOHFKJI.net
>>952
>>955
円の中心を原点(0,0)として、
(-1,1-√3),(-1,-√3),(0,-√3),(0,1-√3)を頂点とする単位正方形、
(0,1-√3),(0,-√3),(1,-√3),(1,1-√3)を頂点とする単位正方形、
(-1/2,2-√3),(-1/2,1-√3),(1/2,1-√3),(1/2,2-√3)を頂点とする単位正方形、
(-1/2,√15/2),(-1/2,√15/2-1),(1/2,√15/2-1),(1/2,√15/2)を頂点とする単位正方形の4つを描き、
あとの4つはそれぞれ4つの象限に正方形の中心を置き、y軸に対して2つが対称になるように置く。
x軸に正対させるんじゃなく斜め45°ぐらいで先に置いた4つの単位正方形にぎりぎり接するか接さないかぐらいで探るとよい。

1011:132人目の素数さん
20/04/01 00:03:28 jY1QTlKF.net
>>955
URLリンク(imgur.com)
完全に手探りで詰め込んでみました. ( Geogebra で作図 )
描画線幅のボヤケで接触してるように見える箇所も実際は離れています.

1012:132人目の素数さん
20/04/01 00:49:33 3A39oS9Q.net
>>956
円の中心を(0,0)とすれば
 (±3/2, -(√7)/2) と (±3/2, 2 -(√7)/2) のなす長方形に6個
 (±1, √3) と (±1, √3 -1) のなす長方形に2個
ですね。
* 2 - (√7)/2 = 0.677124344
 √3 - 1 = 0.7320508


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch