20/03/06 23:02:31.70 D66ej/ua.net
>>663
q>4を二冪として写像f:Fq\{0}→Fqをf(x)=x+1/xで定める。
S=im(f)\{0}の各元yについてf(x)=yを満たすFq\{0,1}の元xが2個ずつ存在するから
2#S=q-2
であり、#S=q/2-1<q-3であるからSにみF4「も属さないb∈Fqがとれる。
bのF2上の最小多項式をP(y)とする。
Q(x)=P(x+1/x)x^n (n=degP)とおく。
代数閉体Ωの元aをf(x)=bの解とすればaはQ(x)の根である。
ここで[Fq(a):F2]はqまたは2qであるからd=[F2(a):F2]は2q,q,2,1のいずれかである。
d=qとなるのは方程式F(x)=bがFqに解を持つ時であり、それはbの取り方に反する。
d=1,2となるときF2(b)⊂F2(a)最小⊂F4上となりやはりbの取り方に反する。
よってF2(a):F2]=2qとなりQ(x)はaの最小多項式であり既約である。
さらにQ(x)の根はP(x)の根βに対して方程式x+1/x=βの解をとるときの全体だから自己相反である。□