面白い問題おしえて~な 31問目at MATH面白い問題おしえて~な 31問目 - 暇つぶし2ch■コピペモード□スレを通常表示□オプションモード□このスレッドのURL■項目テキスト700:132人目の素数さん 20/03/06 23:02:31.70 D66ej/ua.net >>663 q>4を二冪として写像f:Fq\{0}→Fqをf(x)=x+1/xで定める。 S=im(f)\{0}の各元yについてf(x)=yを満たすFq\{0,1}の元xが2個ずつ存在するから 2#S=q-2 であり、#S=q/2-1<q-3であるからSにみF4「も属さないb∈Fqがとれる。 bのF2上の最小多項式をP(y)とする。 Q(x)=P(x+1/x)x^n (n=degP)とおく。 代数閉体Ωの元aをf(x)=bの解とすればaはQ(x)の根である。 ここで[Fq(a):F2]はqまたは2qであるからd=[F2(a):F2]は2q,q,2,1のいずれかである。 d=qとなるのは方程式F(x)=bがFqに解を持つ時であり、それはbの取り方に反する。 d=1,2となるときF2(b)⊂F2(a)最小⊂F4上となりやはりbの取り方に反する。 よってF2(a):F2]=2qとなりQ(x)はaの最小多項式であり既約である。 さらにQ(x)の根はP(x)の根βに対して方程式x+1/x=βの解をとるときの全体だから自己相反である。□ 701:132人目の素数さん 20/03/06 23:17:34.90 D66ej/ua.net >>664 訂正q=2^eとしてeは素数にとるでした。 [Fq:F3]=eで以外それに応じてエスパーおながいします。 次ページ最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch