20/03/06 20:32:42 PniBgS7R.net
前>>660
>>292問題。
>>650を理解した。
半直線OAと円周の交点をC,
半直線BAと円周の交点をEとする。
OA=tとおくと、
OB=1/t
AC=1-t
CB=1/t-1=(1-t)/t
∠QOB=∠QOCは弧QCに対する中心角だから、
円周角∠QPCの2倍。
∠QOB=2∠QPC─?
線分PQは線分DAの垂直二等分線だから、
∠DPQ=∠QPA
△OPA∽△OBP(相似比t:1,相似条件2組とその間の角が等しいから)だから、
同一中心角を頂角とした二等辺三角形△OPCをはさむと、
∠APBはPCにより二等分され、
∠APC=∠CPB
4つの角を足した∠DPBと、内側2つを足した∠QPAで、
∠DPB=2∠QPC─?
??より∠DPB=∠QOB
△OBQにおいて、
OQ:OB=OE:OB=1:1/t=t:1─?
△PBDにおいて、
PD:PB=PA:PB=t:1─?
??よりPD:OQ=PB:OB
2組の辺の比とその間の角が等しいから、
△PBD∽△OBQ