20/03/04 01:46:22.34 ncIVK0Vr.net
>>633
を使って初等的に示してみるまとめ。
半径1の円に内接する三角形ABCをとる、
A≦B≦Cとしてよい。
優弧BC上にDEFを∠BCD=π/3、∠CBE=π/3、∠BCF=∠CBFとなるようにとる。
EもしくはFのいずれかが弧CF上にある方をXとする。
この時
△ABC≦△XBC‥(✳︎)
であり∠XBCか∠XCBのいずれかはπ/3である。
前者のときY,ZをそれぞれC,B、後者のときはY,ZをそれぞれB,Cとすれば
△ABC≦△XYZ
であり∠Z=π/3
である。
Wを∠WXY=π/3
とすれば
△XYZ≦XYW‥(✳︎)
であり△XYWは正三角形である。□
証明の(✳︎)のところは面積のかわりに内接円の半径や三辺の和にしても初等的に示せるので内接円、三辺の和最大も処理できるし、面積をその系で示すこともできて中々気分がいい。