20/02/22 00:34:08.75 P3wMpySS.net
>>512
極座標の曲線r=f(θ), 10=f(-π/2), 5√2=f(-π/4)上を泳ぐ時間は
T(f)=10∫[-π/2,-π/4]√(1+(f'(θ)/f(θ))^2)dθ
δT(f)=0に対するオイラーラグランジュの方程式は
-(f'/f)^2/(f√(1+(f'/f)^2))-(d/dθ)((f'/f)/(f√(1+(f'/f)^2)))=0
整理すると
(f'^2-f''f)(f^2+f'^2)^(-3/2)=0
この解はf(θ)=a e^(bθ)で境界条件を合わせると
f(θ)=10e^((-θ-π/2)(2log2)/π)
このとき
T(f)=10∫[-π/2,-π/4]√(1+(2log2/π)^2)/dθ
=(5/2)√(π^2+4(log2)^2)