面白い問題おしえて~な 31問目at MATH
面白い問題おしえて~な 31問目 - 暇つぶし2ch477:132人目の素数さん
20/02/19 02:37:51.22 eq0pwpep.net
>>452
(1+xz)^n = Σ[i=0,n]C[n,i]x^i z^i
(1+z)^m = Σ[j=0,m]C[m,j]z^j
(1-z)^(-n-1) = Σ[j=0,∞]C[n+j,j]z^j
より
(1+xz)^n (1+z)^mのz^mの係数 = Σ[k=0,m] C[m,m-k]C[n,k] x^k
(1+xz)^n (1-z)^(-n-1)のz^mの係数 = Σ[k=0,m] C[n+m-k,m-k]C[n,k] x^k
だから
f(z) = (1+z+xz)^n (1+z)^m/z^(m+1)
g(z) = (1+xz)^n (1-z)^(-n-1)/z^(m+1)
のz=0における留数が等しいことを示せばよい。
これはz=t/(1-t)と置くとf(z)dz=g(t)dtより明らか


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch