20/02/15 15:56:25.82 UO46pwdD.net
前>>369
>>370
まずm/nの確率でm枚目までに最大が出てるから絶対に負ける。
勝つ確率の最大値は1-m/n
問題はm+1枚目からn枚目までのm-n枚を引く途中で今まで見た最大を見てしまい、残りの枚数で最大が出る可能性を残したままゲームを終わらせてしまうこと。
m+k枚目で今まで見た最大が出たとすると、
(m+k)/n
まだ勝つかわからない。
勝つ確率k/(n-m)
(n-m-k)/(n-m)は負ける。
トータルで負ける確率は、
m/n+(n-m-k)/(n-m)
{m(n-m)+n(n-m-k)}/n(n-m)
=(n^2-m^2-nk)/n(n-m)
トータルで勝つ確率は、
k/n
これらが足して1だから、
(n^2-m^2-nk)/n(n-m)+k/n=1
n^2-m^2-nk+k(n-m)=n(n-m)-m^2-mk=-mn
k=n-m
∴勝つ確率=(n-m)/n
=1-m/n
だからこれは最大値だって。
(n-m)/nより小さい。
今まで見た最大値ならそこで見切るって言ってんだから勝つ確率は1-m/nより確実に小さい。
(n-m)/nを掛ければいいのか?
勘で(1-m/n)^2