20/02/15 10:51:21.54 JNGZDcu7.net
>>349 が気になって夜も眠れないから正式に投稿(眠れたけど)
もちろん自分では未解決。
↓↓ここから問題↓↓
連続関数 f,g:[0,1]→[0,1] は f^-1({0})=g^-1({0})={0}, f^-1({1})=g^-1({1})={1}, を満たし、
どの区間 [a,b] (0≦a<b≦1) においても定数でない。
この時、連続関数 p,q:[0,1]→[0,1] であって、p(0)=q(0)=0, p(1)=q(1)=1 かつ
f(p(t))=g(q(t)) (∀t∈[0,1]) を満たすものは存在するか。
↑↑ここまで問題↑↑
[0,1]^2 の部分集合Sを S = { (x,y)∈[0,1]^2 : f(x)=g(y) } とおくと、
二点(0,0)と(1,1)がSの同じ連結成分に属することは証明できる。
この問題は、この二点が同じ『弧状』連結成分に属するかどうか、と言い換えられる。