面白い問題おしえて~な 31問目at MATH
面白い問題おしえて~な 31問目 - 暇つぶし2ch202:132人目の素数さん
20/02/07 03:19:17 9IJwzjmO.net
>>179
でけたかも。
まず(0,0)以外で漸化式
4e(i,j)=e(i+1,j) + e(i-1,j) + e(i,j+1) + e(i,j-1)
を満たす列を探す。
e(i,j)=∫[|x|,|y|<π] (1-cos((x+y)i)cos((x-y)j))/(1-cosxcosy)dxdy
がこの条件を満たす。
また|i|,|j|→∞で0に行く。
そこで点i,jに電荷はe[i,j]-e[2-i,1-j]となる。(多分解は一意、ノーチェック)
e[0,0]=0, e[2,1]=32π-4π^2
であるから電位差は64π-8π^2。
e[1,0]=4π^2だから原点から隣接する4点に計16π^2の電流が流れる。
よって求める抵抗値は(32π-4π^2)/16π^2=4/π-1/2である。
またe[i,i]が
e[i,i]=∫(1-cosix))/(1-cos(x)cos(y))dxdy
であるが、yについて先に積分すると
e[i,i]=π∫(1-cosix))/|sin(x)|dx
となり、この値はπの有理数倍になる。
コレと漸化式によりe[i,j]はπとπ^2の有理係数の線形結合である。□
e[i,i]の計算が全く思いつかなかった。
e[i,j]の母関数って作れるのかな?


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch