面白い問題おしえて~な 31問目at MATH
面白い問題おしえて~な 31問目 - 暇つぶし2ch2:132人目の素数さん
20/01/27 20:19:50 QSsw4R/8.net
面白い問題おしえて~な 30問目
スレリンク(math板:997番)

997 名前:132人目の素数さん[sage] 投稿日:2020/01/27(月) 19:28:57.79 ID:VuOY61Uq
あとこれは本当に興味本意だけど, 例えば
各Xiを集合{-1, 1-√2, √2}上の離散一様分布とした時に同じ主張が成り立つか, というのは興味がある
あくまで離散的だけど, 畳み込みする毎に中央あたりがどんどん"密"になっていく訳だから…

のご要望にこた�


3:ヲて、やってみた。収束しそうにない印象。 https://i.imgur.com/LXkHRpW.jpg 色彩には意味なし、単に俺が遊んでみただけ。 v=c(-1, 1-sqrt(2), sqrt(2)) # 指定の数値 a=(max(v)-min(v))/2 # a はvの幅の半分にした qn <- function(n,k=1000){ # n個の乱数発生での実験を1000回繰り返す f=function() abs(sum(sample(v,n,replace=TRUE)))<a   # vから重複をゆるしてn個取り出し、総和の絶対値がaより小さければTRUEを返す関数f mean(replicate(k,f())) # fを1000回繰り返しTRUEの頻度を返す } n=1:1000 # nを変化させてqnを実行してグラフにする y=sapply(n,function(n) sqrt(n)*qn(n)) # nを1~1000でsqrt(n)*qnを実行 plot(n,y,pch=19,bty='n',col=sample(colours()))



4:132人目の素数さん
20/01/27 20:46:13 VuOY61Uq.net
>>2
ありがたい…予想よりかなりばらばらになってて意外だ
思ったより繊細な条件なのかアレは…

5:イナ ◆/7jUdUKiSM
20/01/27 20:54:26 1cp91WSt.net
前スレのプールの問題。
最短10秒じゃないの?
プールサイドを5秒、直角に曲がって向こう側から進行方向に対して60°の方向に飛びこめば、ちょうど10秒で対角線に達する。
直角三角形の辺の比が1:2:√3になるから、プールサイドから対角線まで、プールサイドの残りのちょうど2倍の距離を泳ぐことになる。
水中では速さが半分になるから時間はプールサイドを端まで行くのと同じ。つまり5秒。プールサイドのどこから飛びこんでも対角線まで5秒。
5秒+5秒=10秒
どうですか?
これが正解ではないか。

6:132人目の素数さん
20/01/27 22:11:58.10 jyV1bY+U.net
V={(x_1,..,x_n)∈[-1/2,1/2)^n | x_1+..+x_n >= 1/2}の体積が大体1/2-c/√nのオーダーって言うのは何か奇妙だな
n次元単体の体積が1/n!らしいし次元の増加に対して減少してもよさそうだけど

7:132人目の素数さん
20/01/27 22:41:01.22 jyV1bY+U.net
この奇妙な感じは機械学習で言うところの球面集中現象と同じ感じかな

8:132人目の素数さん
20/01/27 23:08:53.38 YG6teE6r.net
まぁしかし理論値もシミュレーションもあってるからそんなもんと思うか、直接体積(のオーダー)計算してみるかしかないのでは?

9:132人目の素数さん
20/01/27 23:16:47.43 jyV1bY+U.net
>>7
奇妙って言うのはどこかに誤りを感じるっていう類いの物じゃなくて、n次元立方体っていうのが直観よりもイビツだなぁという感じの物かな
次元が増加すると角のあたりの体積がどんどん増加していって中心に近い部分がペシャンコになるって言うのが面白い

10:132人目の素数さん
20/01/27 23:17:40.47 YG6teE6r.net
>>4
方眼紙買ってきなさい。
10cm×10cmの正方形を書く。
左下隅中心の半径10cmの円を書く。
1cm右にズレて半径9.5cmの円を書く。
1cm右にズレて半径9cmの円を書く。

1cm右にズレて半径5cmの円を書く。
1cm上ズレて半径4.5cmの円を書く。
1cm上ズレて半径4cmの円を書く。

1cm上ズレて半径0.5cmの円を書く。
コレが大体10秒で到達できる領域。

11:イナ
20/01/27 23:46:12.80 1cp91WSt.net
>>4
10秒で到達しないエリアが存在する。
最初に監視員がいるコーナーから半径10mの扇形の範囲は救える。
向かい側の縁から60の方向に対角線に向かっても10秒の時点では対角線まで到達しない。
最初に監視員がいた地点の反対側のコーナーを30°ずつ三分割したときの真ん中の対角線付近の30°のエリアで半径10mの扇形の外は10秒では到達しない。
10秒のt秒後に対角線上を泳ぐ監視員と、
向かい側の縁から進行方向に対して60°で飛びこみ、対角線に対して、
180°-60°-45°=75°の角度で泳いできた監視員が、同時に到達する地点がただ一点存在する。
15°と75°の直角三角形においてピタゴラスの定理より、向かい側の縁から60°の角度で飛びこむときの到達時間と、対角線上を泳ぐ監視員の到達時間で立式し、
5+5-√{(10√2-10-t)^2-t^2}(2/√3)(1/2)+√{(10√2-10-t)^2-t^2}(1/√3)+t=10+t

12:132人目の素数さん
20/01/27 23:52:17.33 skP32gBw.net
>>5-8
無限次元だとなんと表面しかないぞ。
(余)境界輪体とかコホモロジーだけで論じられるケースが多いから助かるけど。

13:132人目の素数さん
20/01/28 00:03:58.54 DNYbdktV.net
>>11
へぇー何か想像もつかないな
まあ[0,1]^nの表面付近の占める体積の割合がどんどん増えるのは分かるけど
数学科だと何の授業でやるんだろうか

14:132人目の素数さん
20/01/28 00:39:01.11 KMW2IGzj.net
>>11
うわ、ホントだ。
境界しかないね。
( ・∀・)つ〃∩ へぇ~へぇ~へぇ~

15:132人目の素数さん
20/01/28 10:51:36.22 NOAgSK8J.net
>>9
イナ氏に代わって作図の練習に10秒で到達できる範囲の図を書いてみました。
先に上に行ってから右に行くのも付け加えました。
URLリンク(i.imgur.com)

16:イナ
20/01/28 11:52:36.33 JYMx7E8e.net
>>10
>>14惜しい!!
白い空白部分を実線で囲んで、真ん中ら辺に最遅到達点の印があれば正解。

17:132人目の素数さん
20/01/28 12:33:22 KMW2IGzj.net
この図に4本の直線が浮かび上がってるのを読み取れないのがイナの限界だな。

18:132人目の素数さん
20/01/28 12:48:45.88 NOAgSK8J.net
>>15
せっかくなので秒数を指定して描画できるようにプログラムしてみました。
8秒、9秒、10秒、11秒で到達できる範囲を描いてみました。
正解が10から11秒の間にあることが読み取れます。
URLリンク(i.imgur.com)

19:132人目の素数さん
20/01/28 13:20:24.18 NOAgSK8J.net
>>10
方眼紙に作図したら
10秒以内に到達できない領域が白の部分と判明。
ここで疑問。
この白の部分の面積はいくつか?
(自作問題につき正解はもっておりませんので悪しからず)

URLリンク(i.imgur.com)

20:132人目の素数さん
20/01/28 13:26:08.09 KMW2IGzj.net
>>18
中学生でもできる。

21:イナ
20/01/28 14:05:31.35 JYMx7E8e.net
>>15
問題は(10+t)秒のtを求めよってことなんだよ。 方程式立てて解こうとすると0=0になるからみんな放置して作図に精を出してんだよ。
でももうちょい作図すると出ると思う。

22:132人目の素数さん
20/01/28 14:14:11.73 KMW2IGzj.net
みんなって誰?
というかこの問題最初のレスで>>17の図の四角形が潰れる時刻求めてるじゃん。
この問題である時刻までに到達できない領域が四角形か六角形になる事に気づいてないのは君を含む極々一部だけで他の住人はみんなわかってるんだよ。
ただその極々一部のひとがアホほど意味ないレスつけてるからわかってない人間が多くいるように見えるだけ。
おそらくこの問題まだできてないのは2、3人しかいない。

23:132人目の素数さん
20/01/28 15:21:28.55 DNYbdktV.net
>>13
>境界しかないね
これどうやって確かめたの

24:イナ
20/01/28 15:41:20.21 JYMx7E8e.net
>>20
監視員のいる反対コーナーと最遅到達点と縁の向こう側の飛びこみ地点を結ぶ三角形において、正弦定理よりtの二次式を立てこれを解き、tの値を出そうとしてtにiがかかってる状態。

25:132人目の素数さん
20/01/28 16:10:54.20 2Xgr28xI.net
>>8
立方体回転で感じれない?

26:132人目の素数さん
20/01/28 16:16:05.56 DNYbdktV.net
>>24
どういうこっちゃ

27:132人目の素数さん
20/01/28 16:30:20.72 DNYbdktV.net
何か安直に単位n次元立方体の厚さ(e/2)の皮が占める体積の割合考えて
(1^n-(1-e)^n)/1^n=1-(1-e)^n -> 1 (n->∞)
で良いような気がしてきた

28:イナ
20/01/28 17:32:24.59 JYMx7E8e.net
>>23
図を描くとtの値は11秒弱なんだけど、
計算結果は今のところ、
10+t=13.81376309……(秒)
もうちょいだなぁ。
約分間違えたかなぁ。

29:132人目の素数さん
20/01/28 17:43:51.84 WcYqODqP.net
>>22
直積位相の定義。
任意のx∈I^∞の点とその開近傍の基U=Π(ai,bi) (xi∈(ai,bi), 有限個を除いてai=-∞、bi=∞)をとるときUは必ずI^∞でない点を含む。
つまり内点なし。

30:132人目の素数さん
20/01/28 18:09:12 2Xgr28xI.net
I^∞って(射影)極限か
ちょっと過激では

31:132人目の素数さん
20/01/28 18:11:23 Y6uDbGuQ.net
>>29
しかし>>11は無限直積の意味でしょ?
多分。

32:イナ
20/01/28 19:49:07.27 JYMx7E8e.net
>>27
t/(10√2-10-t)=sin15°
t=(10√2-10-t)sin15°
=(10√2-10)sin15°-tsin15°
(1+sin15°)t=10(√2-1)sin15°
t=10(√2-1)sin15°/(1+sin15°)
=0.851642332……
10+t=10.851642332……(秒)
60°よりもっといい飛びこみ角があるってことか。

33:イナ
20/01/28 20:08:34.51 JYMx7E8e.net
>>31
t/(10√2-10-t)=sin13°
t=(10√2-10-t)sin13°
=(10√2-10)sin13°-tsin13°
(1+sin13°)t=10(√2-1)sin13°
t=10(√2-1)sin13°/(1+sin13°)
=0.712964721……
10+t=10.712964721……(秒)
縁からバサロが速いってか。

34:132人目の素数さん
20/01/28 20:34:54.86 DNYbdktV.net
>>28
位相は良く知らないんだけど、x中心の半径超小さい球をとればxの開近傍でI^∞に含まれるように出来ると思うんだけど

35:132人目の素数さん
20/01/28 21:27:26 KMW2IGzj.net
>>33
何故それを開近傍と呼ばないのかは多分数学科以外では教えてない。
すごい高度といえば高度、どうでもいいといえばどうでもいい話なので気にしなくていい。
理解しようと思うとまぁまぁ頑張らないとダメで、しかも数学科以外の人間には役に立たない。

36:132人目の素数さん
20/01/28 21:35:09 DNYbdktV.net
>>34
距離空間だと球の内部は開集合ぐらいの認識なんだけど、無限次元の時だけ開集合じゃなくなる感じなのかな?
出来たらキーワードというかヒントとか教えて欲しい
ちなみに>>28でなぜ有限個を除いてai=-∞、bi=∞っていう制限が付くのかも知りたい

37:132人目の素数さん
20/01/28 21:44:05 KMW2IGzj.net
>>35
とりあえず直積空間の定義は
URLリンク(ja.m.wikipedia.org)
で何故こういう定義になるかというと
URLリンク(ja.m.wikipedia.org)
平たくいうとXiの直積空間Xは
?第i成分を取り出す写像X→Xiが連続にならないと困る。
そのためにはある程度たくさん開集合がないとダメ。
?成分の空間への連続写像の組みfi:Y→Xiが与えられたら、それを第i成分とするような連続写像f:Y→Xが作れないと困る。
そのためにはあまりXに開集合がありすぎても困る。
の両方の要請を満たすのがwikiにある定義。
有限個を除いてai=-∞、bi=∞でないとダメというルールがないと開集合が増え過ぎて?を満たさなくなってしまう。

38:132人目の素数さん
20/01/28 22:01:44.30 B7pSAEXp.net
>>32
監視員はプールの水を抜けばいいんだよ。

39:132人目の素数さん
20/01/28 22:45:34.70 DNYbdktV.net
>>36
とりあえず積空間の普遍性が開近傍に有限個を除いてai=-∞、bi=∞という条件を要請してて
ゆえにどんなxの開近傍をとってもI^∞からはみ出てしまうっていう流れなのかな
>有限個を除いてai=-∞、bi=∞でないとダメというルールがないと開集合が増え過ぎて②を満たさなくなってしまう。
これ証明するの難しそうだが気になる
とりあえず積位相が射影極限の特殊なケースだってのは理解したがこれは積位相の普遍性だけ気にしてればあんまり考えなくても良いことっぽいな

40:イナ
20/01/28 23:02:33.29 JYMx7E8e.net
>>32
>>37
10秒で遠浅にはならんら。

41:132人目の素数さん
20/01/28 23:28:35 KMW2IGzj.net
>>38
証明はそんなに難しいわけではないよ。
数学科の学生さんや卒業生なら腕試しにちょうどいいくらい。

42:132人目の素数さん
20/01/29 00:31:08 qqQ5iFrx.net
>>40
これを見て理解した
URLリンク(www.rs.tus.ac.jp)
位相の生成の時に有限個の共通部分をとる操作と、射影p_i:X->X_iの逆像が第i成分以外X_j全体になるってところが有限の添え字を除いて空間全体(-∞,∞)っていう制限の由来だったのか
射影を連続にする最弱の位相を入れようとすると自然と開近傍の第i成分が第i空間全体を覆ってしまうほどでかくなるってのは面白いね
大まかな流れを示してくれてありがとう

43:イナ
20/01/29 08:44:32.29 +KHtl67s.net
>>39`∥____∥ ; ; ;
/∥__`∥ ̄ ̄∥; ; ; ;
∥∩∩ ∥ □ ∥ ; ; ;
((-_-)∥  ∥;_;_;_;
(`~っ∥  。∥╂─╂
■`(_)_)ц~ ∥╂─╂
\■υυ■___∥、\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\`なんで10秒後がわかるのに到達時間が出ないんだ。面白い。

44:132人目の素数さん
20/01/29 12:27:18.95 82ygfiEH.net
前スレの
「V_n={(x_1,..,x_n)∈[-1/2,1/2)^n | -1/2≦x_1+..+x_n<1/2} の体積が
|V_n|=(1/π)∫[-∞,∞](sinx/x)^(n+1)dx であることを示せ。」
という問題の難易度はどれくらいで解答パターンはいくつぐらいあるのだろうか?

45:132人目の素数さん
20/01/29 13:30:36.57 ChU8VoG8.net
>>33
>>28,30に書いている解釈だと無理

46:132人目の素数さん
20/01/29 13:31:17 ChU8VoG8.net
>>34
>何故それを開近傍と呼ばないのかは多分数学科以外では教えてない。
開近傍でもイイヨ
位相が違うだけ

47:132人目の素数さん
20/01/29 13:32:39 ChU8VoG8.net
>>35
座標への射影に関する弱位相入れるのが普通だから
別の位相でもイイ

48:132人目の素数さん
20/01/29 15:06:00.80 qqQ5iFrx.net
>>45
>>33はx中心の開球でI^∞に収まるようなものをxの開近傍として取れるのではと言ってるが
>>34は積空間の普遍性を満たすような位相を入れると>>34の開球は開近傍にはならないと言ってるのでは

49:132人目の素数さん
20/01/29 15:27:39.32 qqQ5iFrx.net
>>47
×>>34の開球
>>33の開球

50:132人目の素数さん
20/01/29 15:49:56.60 bSeLoPS+.net
そもそも大元の>>11が気になるんだけど。
コホモロジー使うとか言ってるけど可縮じゃないのかな?

51:イナ ◆/7jUdUKiSM
20/01/29 16:31:07 +KHtl67s.net
>>42
10秒77では到達できなくて10秒85で到達できるエリアで溺れた人は監視員によっては救えるけど監視員によっては救えない運命にあるってことか。

52:イナ
20/01/29 20:35:21.32 +KHtl67s.net
/∥卍`∥ ̄ ̄∥前>>42
∥∩∩`∥ □ ∥[臥薪嘗
((-_-)∥  ∥______
(っц~∥  。∥╂─╂
■`(_)_)   ∥╂─╂
\■υυ■___∥、\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\`対角線を泳ぐより、少しだけプールサイドを進んで進行方向に対して60°の方向に飛びこむと速い。10+t(秒)で監視員が溺れてる人がおってんとこに到達するとして、
突き当たりまで5秒進んで直角に曲がって5秒から10秒までのあいだに進行方向に対して60°の方向に飛びこんだ別の監視員が、10+t(秒)で溺れてる人がおってんとこに到達することも可能。

53:イナ
20/01/29 22:31:53.37 +KHtl67s.net
>>51
対角線上に監視員からx(m)の位置で溺れた人のとこに手前の縁から進行方向に対して60°に飛びんでも、向こう側の縁から進行方向に対して60°の方向に飛びこんでも同時に到達するとすると、
(x/√2-x/√6)(1/2)+(x/√2)(2/√3)=5+{10-(10-x/√2)(1+1/√3)}(1/2)+(10-x/√2)(2/√3)
辺々2√6掛けて、
(3+√3)x=10√6+√6(x/√2-10/√3-x/√6)+40√2-4x
(3+√3-√3+1+4)x=10√6-10√2+40√2
8x=(10√6+30√2)
x=5(√6+3√2)/4
=8.36516304……
∴5秒進んで直角に曲がって5秒から10秒までのあいだに60°の方向に飛びこむといい。

54:132人目の素数さん
20/01/30 00:32:27 QWolHuOm.net
惜しいねぇ

55:イナ
20/01/30 03:48:20.72 ghDavkZm.net
>>52
向こう側の縁からθの角度で飛びこんだ監視員が泳ぐ時間は、
(10-x/√2)秒。
突き当たりを直角に曲がって飛びこむまでの時間は、
{10-(10-x/√2)(1+1/cosθ)}(1/2)
=5-(5-x/2√2)(1+1/cosθ)
=-5/cosθ+x/2cosθ√2+x/2√2(秒)
これらと最初のコーナーまでの5秒を足すと救出時間は、
(1/sinθ)(10-x/√2)-(1/2cosθ)(10-x/√2)+(1/2)(10+x/√2)
微分すると、
-1/sinθ√2+1/2cosθ√2+1/2√2=0
-2/sinθ+1/cosθ+1=0
-2cosθ+sinθ+sinθcosθ=0
(2-sinθ)cosθ=sinθ
cosθ=sinθ/(2-sinθ)
sin^2θ+{sinθ/(2-sinθ)}^2=1
sin^2θ(2-sinθ)^2+sin^2θ=(2-sinθ)^2
4sin^2θ-4sin^3θ+sin^4θ+sin^2θ=4-4sin^2θ+sin^4θ
4sin^3θ-9sin^2θ+4=0
sin^3θ-(3sinθ/2)^2+1=0
sin^3θ+1=(3sinθ/2)^2
3sinθ/2-√(sin^3θ+1)=0になるθを探すと、
θ=57.465773447629°のとき、
(3/2)(sin57.465773447629°)-√((sin57.465773447629°)^3+1)=0となり極大値を与える。
向こう側の縁から57.465773447629°の方向に飛びこむと最速で救出できる。
救出時間は、
(1/sin57.465773447629°)(10-x/√2)-(1/2cos57.465773447629°)(10-x/√2)+(1/2)(10+x/√2)
=(1/sin57.465773447629°-1/2cos57.465773447629°)(10-x/√2)+(1/2)(10+x/√2)
=2.56432763+5+x(1/2√2-0.256432763/√2)
=7.56432763+0.172228045x
10<x≦10√2
救出時間が9秒台。あまりにも速すぎる監視員。

56:132人目の素数さん
20/01/30 08:06:02 QWolHuOm.net
また遠のいた

57:132人目の素数さん
20/01/30 12:38:02.12 lFGe72YJ.net
>>18
円の共通接線の方程式

交点の座標

三角形に分割した辺の長さ

ヘロンの公式
は計算が複雑過ぎて俺には無理だな。

58:132人目の素数さん
20/01/30 13:41:59 Xe9+JgnQ.net
t=10の時点で下ヘリの直線が(20,0)を通る傾き1/√3の直線とわかれば簡単。
座標設定しなくても下側の頂点からx軸に垂線下ろして直角二等辺三角形と台形に分ければ相似な三角形出まくる(1:1:√2のやつと1:2:√3のやつしか出てこない)のでそれを利用すれば中学生でも解ける。
ちなみに四角形が潰れる時点の算出も上手く補助線引けば中学生でもできる。
もちろん共通接線が1m/秒でそれぞれ傾き√3と1/√3を保ちながら平行移動している事がわかる前提だけど。

59:イナ
20/01/30 15:00:42.01 ghDavkZm.net
>>54
>>57
θ=60°のとき、
微分=0より、
3sin60°/2-√{sin^3(60°)+1}=0.0147020699……
≠0
●●ヘリの傾きは1/√3より少し小さいとわかった。y切片もどうだろう。手描きで20超えてる。中学生には無理だと思う。

60:132人目の素数さん
20/01/30 15:06:36.60 Xe9+JgnQ.net
>>58
頭使って考えてないからわからんのだよ。
>>14の図のx軸上に中心がある円を描く作業をどんどん続けていったらどこで半径0になるかわからんかね?その点を通ってx^2+y^2=100に接する直線はきみにはお手上げ?

61:132人目の素数さん
20/01/30 16:21:58 YqjWsCqQ.net
>>58
原点スタート右上ゴールに採れば円三つ(原点中心, 右下の角中心, 右上の角中心)書くだけで解けるよ
辺の比1:2:√3の直角三角形と一次関数が分かる中学生なら解ける

62:イナ
20/01/30 17:06:50.80 ghDavkZm.net
>>58
θ=57.465773447629°
向こう側の縁から飛びこむ角度が57.465773447629°ということは、
監視員が最初にいるコーナーの対角コーナーから、泳ぐ経路に引いた垂線が、向こう側の縁となす角は、
90°-57.46773447629°=32.53226552371°
対角線となす角は、
45°-32.53226552371°=12.46773447629°
監視員が10秒過ぎてから救出地点に達するまでに泳いだ時間t(秒)または距離t(m)は、
(10√2-10-t)sin12.465773447629°=t
(10√2-10)sin12.465773447629°=t+tsin12.465773447629°
t=(10√2-10)sin12.465773447629°/(1+sin12.465773447629°)
=0.735371693
到達時間10+t=10.735371693(秒)

63:132人目の素数さん
20/01/30 18:05:26.29 Xe9+JgnQ.net
謎の57.‥°にこだわってる限り永遠に答えは出ないねぇ。

64:イナ ◆/7jUdUKiSM
20/01/30 20:00:55 ghDavkZm.net
>>61
>>62なぞは解ける。微分して極値を求めない人にはわからない。
>>54で救出時間を微分して=0のときθ=57.465773447629°
飛びこむ角度、飛びこむ地点、泳ぐ距離、救出時間、すべて求まる。
60°は当たりをつけただけだ。それで近い値は出る。実際に速いのは61°なのか59°なのか、監視員のとっさの判断を計算で求めることに数学の意味があると思う。
57°や58°はだれでもやる。57.465773447629°をやった者だけが味わいうる解放感がある。

65:132人目の素数さん
20/01/30 20:07:06 Usr95p92.net
>>63
その微分計算がおかしいと何故思わん?
>>14の図の直線の最先端、つまり直線と接している各円とその中心のプールサイドとのなす角は何度だね?
なんで図に直線が現れたらその直線の方程式を求めてみようと思わんの?
そういう問題云々いう以前の部分まるっきしダメダメなんだよ。

66:イナ
20/01/30 20:55:35.69 ghDavkZm.net
>>63
>>64
60°や30°や45°で当たりをつけるのはいいと思う。でも結局はθで一般式を立てなきゃ正確な値が出ないと思う。
60°よりちょっと早いタイミングで飛びこむと、縁の距離が短くなって泳ぐ距離は長くなる。けど全体として距離は少しだけ短くなるし、直角に飛びこむのはたしか30°の方向に飛びこむときと同じだと思ったから、それなら少し早めに飛びこむと速いと思った。
せめぎあいだと思う。
微分=0で極値を求めるでいいと思う。
ちょっと勇気があれば微分できる。そんなに難しくなかった。

67:132人目の素数さん
20/01/30 21:04:37.08 Usr95p92.net
イナwolfram先生の採点。
(0,0) から(1,1)までかかる所要時間。
何度で最小かね?

68:132人目の素数さん
20/01/30 21:05:28.48 Usr95p92.net
57度かね?
URLリンク(www.wolframalpha.com)

69:132人目の素数さん
20/01/30 21:17:37.28 lFGe72YJ.net
>>57
レスありがとうございます。
秒数を指定して描画できるようにプログラムを作ったついでに
時間tの時の空白面積を算出するプログラムを作ろうと思っていたんだけど複雑すぎて諦めました。

70:132人目の素数さん
20/01/30 21:47:33.55 Xe9+JgnQ.net
>>65
wolfram先生に微分をお願いした
URLリンク(www.wolframalpha.com)
d/dx(1/2 (a - b cot(x)) + b/sin(x)) = 1/2 b csc(x) (csc(x) - 2 cot(x))
csc(x)=1/sin(x)
cot(x)=cos(x)/sin(x)
つまりくくると
= 1/2 b csc(x) 2/sin(x)(1/2- cos(x))
ですわ。
イナ君よ。1/2-cos(x)はどこで符号が変わるかね?
57.‥のところかね?

71:イナ ◆/7jUdUKiSM
20/01/30 22:01:48 ghDavkZm.net
>>65
>>69微分は難しいから、相手よく見て。
泳げる人や縁の近くにいる人は救出しなくていい。
まぁでも溺れてる人は自分が縁にいるとわかってないから溺れてるわけだし、縁からひっぱりあげることは必要。
ただ安易に飛びこむと監視員が溺れることになりかねない。距離が長いときは注意しないと。
縁をまっすぐ10秒でいいと思う。

72:132人目の素数さん
20/01/30 23:27:12 Xe9+JgnQ.net
大体考えたらわかるでしょ?
大学入試の問題で最小値をとる角度が60°みたいないわゆる"有名角"になってるかどうかはともかくとして、答えないといけない最小値自身は計算機使わないと答えでないような中途半端な値なわけないやん?

73:イナ ◆/7jUdUKiSM
20/01/30 23:45:58 ghDavkZm.net
>>70
>>71
入試の問題かどうかは知らない。
最速何秒か求めようと微分して分子=0で極値を求めたらたまたま出た。
その値に端数が出たので違うとかあってるとか言われても知らない。

74:132人目の素数さん
20/01/31 00:11:23 BSBc/B6d.net
無限の「表面」ネタを押し流すために頑張ってるようにすら見えるな。このコテ。

75:132人目の素数さん
20/01/31 00:36:53.63 BSBc/B6d.net
無限は表面しかない。
スレリンク(math板)

立てた。

76:132人目の素数さん
20/01/31 00:52:33.84 z/KD0w6T.net
>>72
何も出てない。
強いて言えば間違った答えが出ただけ。
もはや永遠にイナのレスから正解が出る事はないのだろうか?

77:132人目の素数さん
20/01/31 01:31:49.29 NEbeyvsi.net
>>74
荒い位相だからね

78:イナ
20/01/31 03:25:42.12 oSeo+rOS.net
>>72
>>75そのときはわかって確信を持って書いてるけど、時間が経つとなんのことだかさっぱりわからない。
とにかく同じ思考にたどり着くまでに時間がかかるからちょっと待ってほしい。
ほんとに俺が解いたのかと思うぐらい計算間違いをしてる可能性もあるし、逆にどこか間違えたまま計算はあってる可能性もある。

79:イナ
20/02/01 04:55:29.22 MAkALVaE.net
>>77
y=-(1/√3)(x+10)+10
y=(x+10/√2)√3+10/√2
の交点のx座標は、
-(1/√3)(x+10)+10=(x+10/√2)√3+10/√2
x=-5/2+5√3/2-15√2/4-5√6/4
y座標は、
y=-(1/√3)(-5/2+5√3/2-15√2/4-5√6/4+10)+10
=15/2-5√3/2+5√6/4+5√2/4
この交点を通り、傾きが、
(√3-1)/(√3+1)の直線と、y=-xの交点のy座標をYとおく。

80:イナ ◆/7jUdUKiSM
20/02/01 14:24:19 MAkALVaE.net
>>78
-x={-(√3-1)/(√3+1)}(-x-5/2+5√3/2-15√2/4-5√6/4)+15/2-5√3/2+5√6/4+5√2/4
Y={-(√3-1)/(√3+1)}(Y-5/2+5√3/2-15√2/4-5√6/4)+15/2-5√3/2+5√6/4+5√2/4
(√3+1)Y=-(√3-1)(-5/2+5√3/2-15√2/4-5√6/4)+(√3+1)(15/2-5√3/2+5√6/4+5√2/4)
2Y√3=-(4-2√3)(-5/2+5√3/2-15√2/4-5√6/4)+2(15/2-5√3/2+5√6/4+5√2/4)
Y=(-2/√3+1)(-5/2+5√3/2-15√2/4-5√6/4)+15/2√3-5/2+5√2/4+5√2/4√3
=-2/√3(-5/2+5√3/2-15√2/4-5√6/4)-5/2+5√3/2-15√2/4-5√6/4+15/2√3-5/2+5√2/4+5√2/4√3
=5/√3-5+15√2/2√3+5√2/2-5/2+5√3/2-15√2/4-5√6/4+15/2√3-5/2+5√2/4+5√2/4√3
=25√3/6-10+50√6/12
救出時間=5+{Y+(10-Y)√3}/2
=5+{25√3/6-10+50√6/12+(10-25√3/6+10-50√6/12)√3}/2
=5+(25√3/6-10+50√6/12+20√3-25/2-50√2/4)/2
=5+(145√3/6+50√6/12-45/2-50√2/4)/2
=5+145√3/12+25√6/12-45/4-25√2/4
=145√3/12+25√6/12-25/4-25√2/4
=10.9432161……(秒)

81:イナ
20/02/01 15:26:14.08 MAkALVaE.net
>>79
>>61のほうが速い。

82:132人目の素数さん
20/02/02 07:29:44 RsjgDQhE.net
4次元世界の問題

一辺の長さが10mの立方体のプールの一つの角に監視員を置く.この監視員は水中は秒速1mで,プー ルの縁上は秒速 2m で移動するものとする.この監視員がプールのどこへでも到達しうるには,最短で何秒 必要か計算せよ.

83:132人目の素数さん
20/02/02 15:37:37.40 q2RgJvbX.net
>>81
プログラムを組んでやってみた。
監視員の座標を(0,0,0)とすると、
> opt[1]
$par
[1] 7.691099 7.691099 7.691099
への到達が最も時間がかかり、
> opt[2]
$value
[1] 13.26518
秒とでてきた。
後は数理の達人の解析解と一致するかを待つまつのみ。

84:132人目の素数さん
20/02/02 16:16:11.62 q2RgJvbX.net
>>82
この点に到着する最短ルートは
(1.41135,0,0) (0,1.41135,0) (0,0,1.41135)のいずれかから水中に入るという結果になった。
数理的には偏微分して解くのかな?


85:



86:132人目の素数さん
20/02/02 17:40:38.42 RsjgDQhE.net
理論値とまぁまぁ離れてるな。
まぁこっちの持ってる解も100%自信があるわけではないけど。

87:132人目の素数さん
20/02/02 18:07:40.48 RsjgDQhE.net
>>83
それおかしくない?
その入水地点(1.41135,0,0)から直線y=x,z=0に下ろした垂線の足から入水すれば歩く距離も泳ぐ距離も短くならない?

88:132人目の素数さん
20/02/02 20:38:00.28 q2RgJvbX.net
>>85
プールサイドからしか入水できないという前提じゃないの? プールの壁のどの点からでも入水できるということなら俺は全く別物を計算していることになる。
# O (Oから水没)
# O-X(X軸上から水没)
# O-X-Y(Xを全長走行してY軸上から水没)
# O-X-Y-Z(X,Yを全長走行してZ軸上から水没)
という風にして時間を計測したんだけど。

89:132人目の素数さん
20/02/02 20:48:44.75 q2RgJvbX.net
つまり、横に5m走ってから上に5m走った点から目標にむけて入水も可能という設定ですか?

90:132人目の素数さん
20/02/02 21:01:18.47 eOqQ3fgS.net
>>87-88
もちろん設定は4次元なんだからプールサイドは立方体の表面ですよ?
表面どこからでも入水可能です。

91:132人目の素数さん
20/02/02 21:04:59.58 q2RgJvbX.net
>>88
立方体の辺からしか入水できないものとしてプログラムを組んだのでやり直します。

92:132人目の素数さん
20/02/02 22:53:30.63 q2RgJvbX.net
>>89
プログラムをやり直してみた。
> opt$objective
[1] 8.327796
秒で
> opt$maximum*e
[1] 5.293786 5.293786 5.293786
が座標
という結果になった。

93:132人目の素数さん
20/02/02 23:01:18.82 q2RgJvbX.net
入水する座標は (1.965991, 8.621582, 10)となった。

94:132人目の素数さん
20/02/02 23:42:45.05 EzepMClR.net
多分違う。
二次元のときと同じで入水地点からの泳ぐ経路と入水した面のなす角は60°である事が必要だけど60°になってません。

95:132人目の素数さん
20/02/02 23:56:43.95 miBDuDBm.net
多分違う。
二次元のときと同じで入水地点からの泳ぐ経路と入水した面のなす角は60°である事が必要だけど60°になってません。

96:
20/02/02 23:57:14.88 mBdy+u7t.net
>>80
>>54の前半と、
>>61で最小値あってるよね?

97:132人目の素数さん
20/02/03 00:02:55.43 QjeNGJ5C.net
あってない。
もう諦めよう。

98:132人目の素数さん
20/02/03 00:06:49.92 ofWvSfGK.net
ちなみにウソだと思うなら2007 東工大 AO入試で検索してみるといい。
山ほど5+10/√3出てくるから。
これだけ時間かけてまだダメならもう無理でしょう。

99:イナ
20/02/03 00:20:33.82 avp8Qlns.net
>>96
10.7735秒より10.735秒のほうが速い。

100:132人目の素数さん
20/02/03 00:40:08 n+PD/BkY.net
じゃあよかったじゃん。
おめでとう。
じゃあネット中に転がってる解答は全部間違ってるんだね。
すげーじゃん。イナ。
世間に転がってる解答の上を行ったんだね。

101: 【大吉】
20/02/03 00:59:37 avp8Qlns.net
>>97
>>98わずか5+10/√3-10.735371693=0.0381309989(秒)速いだけだけど、勝ててよかった。救えない命が救えるタイムだと思う。

102:132人目の素数さん
20/02/03 01:14:14 mN5A/Qik.net
うん、諦めが肝心。

103:132人目の素数さん
20/02/03 05:26:34.59 0LuwDr/b.net
>>93
ありがとうございます。
x=10の平面(壁)から入水する場合にはz=0の壁を通るルートとy=0の壁を通るルートの二つがあるのを見逃していました。
そこを修正してみたら、
> opt$objective # 最短でも必要な秒数
[1] 11.74535
最も時間がかかる位置は
> (Scrit=opt$maximum*e) # 最遅点の座標Scritical = 対角線上距離×方向単位ベクトル
[1] 7.466237 7.466237 7.466237
入水する点はのいずれか
(6.541114, 6.541114,10)
(10, 6.541114,6.541114)
(6.541114,10, 6.541114)
とういう数字になりました。
まだ、別のバグがあるかもしれません。

104:132人目の素数さん
20/02/03 06:09:33.40 mpjDkD/V.net
解析解を求めようとしましたが、きれいに出そうもないので、最後はNSolveを使いました。結果は次です。
(x,x,0)、あるいは、(10,y,y)で、水中に進入して、(p,p,p) へ向かったときに要する時間 t が最大必要時間。ただし、
x= 4.4181491667177352242257646161...
y= 6.5411105380457743031791097544...
p= 7.4662212132535098497019158523...
t=11.7453528906822212444517842198...

105:132人目の素数さん
20/02/03 06:11:27.64 0LuwDr/b.net
>>101
入水角度
> asin(h/r)*180/pi # 理論値=60°
[1] 62.69019
になったから、数値解での誤差なのか、プログラムのバクの可能性も十分にあるな。

106:132人目の素数さん
20/02/03 06:19:48.79 0LuwDr/b.net
最適化のアルゴリズムをNelder-Mead法に変えて計算し直してみた。
> opt$objective # 最短でも必要な秒数
[1] 11.69816
> (Scrit=opt$maximum*e) # 最遅点の座標Scritical = 対角線上距離×方向単位ベクトル
[1] 7.43622 7.43622 7.43622
> sim(opt$maximum,print=T) # 最遅点に最速で到達する経路を表示
Z10 Y10 X10 : 11.69816
> (Jz=c(jmpz$par,Lz)) # 入水点の面z=10での座標
[1] 6.074329 6.855617 10.000000
この時の入水角度は
> asin(h/r)*180/pi # 理論値=60°
[1] 59.99515
理論値と近似した!
後は、出題者の解析解と一致しているかが楽しみ。

107:132人目の素数さん
20/02/03 06:33:56.89 0LuwDr/b.net
>>102
その数値だと入水角度がぴったり60度になりました。
> x= 4.4181491667177352242257646161
> p= 7.4662212132535098497019158523
> Scrit=c(p,p,p)
> h=p
> J=c(x,x,0)
> r=dit(Scrit,J,1)
> asin(h/r)*180/pi
[1] 60

108:132人目の素数さん
20/02/03 06:57:23.52 0LuwDr/b.net
>>97
√3の小数表示から立方体プールの方に移ればいいじゃないの?
きれいな式での解は困難ということだから、計算が二次元プール以上に楽しめると思うんだけど。

109:132人目の素数さん
20/02/03 07:02:57.07 mpjDkD/V.net
>>105
>> > (Jz=c(jmpz$par,Lz)) # 入水点の面z=10での座標
>> [1] 6.074329 6.855617 10.000000
あれ、こんなところで、対称性の破


110:れが、... 驚きました。手抜きすべきではありませんでした。 >>102 は取り下げます。



111:132人目の素数さん
20/02/03 07:04:51.54 mpjDkD/V.net
上記は
105 ではなく、>>104の間違いです。

112:132人目の素数さん
20/02/03 07:48:20.98 0LuwDr/b.net
>>107
対称性からいえば
Z=10の平面での入水点は
(6.074329 ,6.855617, 10)
(6.855617, 6.074329 ,10)
の二つがあることになり、
どちらを経由しても
所要時間は同じになりました(まあ、当然とでしょうけど)
> f(jmpz$par[1],jmpz$par[2])
[1] 11.698156288555285
> f(jmpz$par[2],jmpz$par[1])
[1] 11.698156288555285
>

113:132人目の素数さん
20/02/03 08:21:54.06 5QqjKgBu.net
理論値は
11.69815627019646153787418090069489267584187319472412254855
です。

114:132人目の素数さん
20/02/03 09:20:05.75 xmpWmdc0.net
ちなみに方程式は4次方程式なので手計算で答え出すのは大変ですが、wolfram先生にお願いすれば二重までの根号で出るようです。
方程式自体は簡単です。
むしろ難しいのは、方程式を立式する上で、二次元の場合なら当たり前で許してもらえる事が三次元ではそこまで当たり前に思えない事。
本問では所要時間最大になる点がx=y=z上にある事を示すのがやや難しい。
今のところ持ってる解法はあまり美しくない。

115:イナ ◆/7jUdUKiSM
20/02/03 11:08:18 avp8Qlns.net
>>99訂正。
前々>>97
前々の前>>94
>>54入水角度=57.465773447629°のときが最速とわかり、
>>61救出時間=10秒735371693

116:132人目の素数さん
20/02/03 11:42:45 MOGD/Do4.net
>>111
所要時間の式を偏微分して極値を出すのではないの?

117:132人目の素数さん
20/02/03 12:12:04 04w+XRU0.net
>>114
所要時間のなす関数は最大値を与える点で偏微分不可能です。
理由は二次元の場合と同じく、関数の定義にminが入るから。
明らかに無視できる経路を除いて最短経路になる候補が6個あり、所要時間=min{f1,f2,‥,f6}の形になる。
各々のfiは偏微分可能ですが、求める点はいずれのfiの極値にもなってはいません。
x=y=zに制限してもダメ。
手持ちの解答の方針としては
・まず6個に絞る。
・x=y=zに絞る。
・実質二個になる。
・min{f1,f2}の最大値は?
です。
6個に絞るのはめんどくさいだけ。
x=y=zに絞るところが手持ちの解はあまり綺麗でない。
以下は簡単。

118:132人目の素数さん
20/02/03 12:19:10 04w+XRU0.net
あ、ウソ言った。
・6個に絞る。
・実質2個に絞る。
・x=y=zに絞る
でした。
やってる事は東工大のと同じ。

119:132人目の素数さん
20/02/03 12:37:52.30 MOGD/Do4.net
>>114
個々のfをwolfram使って偏微分しようと思っていたけど無駄なんだな。
確かに自分のプログラムコードでもminを使っている。

120:132人目の素数さん
20/02/03 12:38:51.80 MOGD/Do4.net
>>112
話題は立方体に移っているよ。

121:イナ ◆/7jUdUKiSM
20/02/03 15:59:52 avp8Qlns.net
>>112
>>113偏微分。
それだと思う!
入水角度θと監視員が最初にいる地点から対角線上にある救出場所までの距離xという2つの変数がある。
xが一次だから解けたのかもしれない。

122:132人目の素数さん
20/02/03 16:24:28.58 Bd06CPXX.net
>>81
単純化のためp≧q≧rとし
経路a: (0,0,0) -> (x,y,0) -> (p,q,r)
経路b: (0,0,0) -> (0,y,z) -> (p,q,r)
経路c: (0,0,0) -> (x,0,z) -> (p,q,r)
とするとき、経路aの所要時間
t=√(x^2+y^2)/2+√((p-x)^2+(q-y)^2+r^2)
の極小値(∂t/∂x=0,∂t/∂y=0)を計算すると
t=(√(p^2+q^2)+√3 r)/2,
(x/p=y/q=1-r/(√3 √(p^2+q^2))のとき)
で、これは経路a~cで最も小さい。
この所要時間はp=q=rのとき最大となり
t=((√2+√3)/2)p ----(1)
経路d: (0,0,0) -> (10,y,z) -> (p,q,r)
経路e: (0,0,0) -> (x,10,z) -> (p,q,r)
経路f: (0,0,0) -> (x,y,10) -> (p,q,r)
とするとき、経路aの所要時間
t=√((10+y)^2+z^2)/2 + √((10-p)^2+(q-y)^2+(r-z)^2), (y<zのとき)
t=√(y^2+(10+z)^2)/2 + √((10-p)^2+(q-y)^2+(r-z)^2), (y≧zのとき)
の極小値(∂t/∂x=0,∂t/∂y=0)を計算すると
t=(√3 (10-p)+√(q^2+(10+r)^2))/2,
((q-y)/y=(r-z)/(10+z)=(10-p)/(-(10-p)+√3 √((10+q)^2+r^2))のとき)
で、これは経路d~fで最も小さい。
この所要時間はp=q=rのとき最大となり
t=(√3 (10-p)+√(p^2+(10+p)^2))/2 ----(2)
(1)(2)を連立させて
√(p^2+(10+p)^2)=(√2+2√3)p-10√3
これを解くと
p=(5/6)(15-4√6+√(249-96√6))
のとき
t=(5/12)(3+√6)(5√3-4√2+√(83-32√6))
=11.69815627...

123:132人目の素数さん
20/02/03 17:22:13.38 lGSYI3JC.net
>>119
(1)(2)を連立させての意味が直ぐには理解できなかったのでグラフにしてみました。
URLリンク(i.imgur.com)

124:132人目の素数さん
20/02/03 19:21:36 lGSYI3JC.net
wolframに

local minimum sqrt(x^2+y^2)/2+sqrt((p-x)^2+(q-y)^2+r^2) where 0<x<10 and 0<y<10

local minimum sqrt((10+y)^2+z^2)/2 + sqrt((10-p)^2+(q-y)^2+(r-z)^2) where 0<y<10 and 0<z<10 and y<z

local minimum sqrt(y^2+(10+z)^2)/2 + sqrt((10-p)^2+(q-y)^2+(r-z)^2) where 0<y<10 and 0<z<10 and y>=z

を入力したけど、どれも上手くいかなかった。

125:132人目の素数さん
20/02/03 19:29:46 lGSYI3JC.net
所要時間はp=q=rのとき最大 というのが私には明らかでないので

座標をいれたら所要時間を計算する関数sim2を作ってコンピュータに最大値を探索させてみた。
探索を始める初期値によって収束しないこともあるので初期値を乱数発生させて収束したら表示するように設定。

> while(opt$convergence!=0){ # 初期値を乱数発生させて収束するまで繰り返す
+ opt=optim(par=sample(0:10,3),sim2,control = list(fnscale=-1),method='N')
+ }
> opt
$par
[1] 7.436222 7.436221 7.436221

$value
[1] 11.69816

$counts
function gradient
308 NA

$convergence
[1] 0

$message
NULL

コンピュータでの探索値では収束したらp=q=rになった。

126:132人目の素数さん
20/02/03 19:38:43 Bd06CPXX.net
>>122
>所要時間はp=q=rのとき最大 というのが私には明らかでないので
pを固定させてq,rをp≧q≧rの範囲で動かすことを考える。
このとき、所要時間はqまたはrの単調増加関数だから明らか。

127:132人目の素数さん
20/02/03 21:19:57 lGSYI3JC.net
>>123
立方体でなくて直方体のときも所要時間最大の点は
原点と最遠の頂点を結ぶ線上にあるのかな?

128:132人目の素数さん
20/02/03 21:54:52.14 lGSYI3JC.net
数値を変えて
オリンピックサイズ・プール50m×25mの水の入ったプールの一つの角に監視員を置く。
水深2.5mとする。
この監視員は世界記録で移動するものとする。
水泳100m自由形 46秒91で水中を移動
陸上100m9秒58でプールを囲む面を」移動
この監視員がプールのどこへでも到達しうるには,最短で何秒必要か計算せよ。
をやってみたけど、最遠の頂点が一番時間がかかるという結果になったので面白みがなかった。
ただ、所要時間最大点はこの頂点と原点を結ぶ線上にあるという前提でのプログラムなので結果には自信がない。

129:イナ ◆/7jUdUKiSM
20/02/03 22:59:09 avp8Qlns.net
微分して極値を与える角度と距離だと思うんだよ。
/∥__`∥ ̄ ̄∥;;;;;;
∥∩∩ ∥ □ ∥;;;;;;
((-_-)∥  ∥;;;;;;
(っ⌒⌒  。∥╂─╂
■`(_)_)ц~ ∥╂─╂
\■υυ■___∥、\\\\\\\\\\\\\\\\\\`前>>118\\\\\\\\\\\\\\\\\\

130:132人目の素数さん
20/02/03 23:19:00 SKsq1rTN.net
>>125
> 水深2.5mとする。
この情報いる?

それはともかく、対角までの時間は、
75*0.0958=7.185
で、例えばプールの中心までは
(25-12.5tan(asin(9.58/46.91)))*0.0958+12.5cos(asin(9.58/46.91))*0.4691≒7.88
じゃないの?

> 所要時間最大点はこの頂点と原点を結ぶ線上にあるという前提
そんな根拠はない、というか間違いだろう
ぱっと考えられるのが、対角の2等分線上が考え付くが、それを採用するにも根拠がいる

131:132人目の素数さん
20/02/03 23:19:19 to5eQB6u.net
陸上の速度をv、水中の速度をwとし、m=w/√(v^2-w^2)とする。
プールを0<x<a、0<y<bとする。
辺y=0から入水してt秒�


132:繧ノ到達できる領域はmx+y≦mvt、 辺x=0から入水してt秒後に到達できる領域はmy+x≦mvt、 辺y=bから入水してt秒後に到達できる領域は-y+mx≦-b+mvt、 辺x=aから入水してt秒後に到達できる領域は-x+my≦-a+mvt である。 方程式 mx+y=mvt‥?、my+x=mvt‥?、 -y+mx=-b+mvt‥?、-x+my≦-a+mvt‥? において ???を連立して得られるtをt1、 ???を連立して得られるtをt2とすれば到達時刻の最大値はmin{t1,t2}である。



133: 【大吉】
20/02/04 00:08:14 +IjSdzOF.net
>>126
>>54修正。
向こう側の縁からθの角度で飛びこんだ監視員が泳ぐ時間は、
(10-x/√2)/sinθ(秒)

表記ミスがあった。計算が間違ってなければいいんだけど。

134:132人目の素数さん
20/02/04 03:29:19 W/1szoPy.net
>>127
z軸もあるから水深は必要。

135:132人目の素数さん
20/02/04 03:33:34 W/1szoPy.net
>>123
経路 a のt をqで偏微分すると
(q - y)/√((p - x)^2 + (q - y)^2 + r^2)
増加関数と言いるんだろうか?

136:132人目の素数さん
20/02/04 04:18:31.12 LNHsvcqa.net
>>131
そっちじゃなくて、tの極小値のほう
t=(√(p^2+q^2)+√3 r)/2,
これは明らかにqまたはrの増加関数

137:132人目の素数さん
20/02/04 05:36:20 W/1szoPy.net
>>127
立体だと複雑になるので平面で考えて

横20m縦10mのプールで陸上速度毎秒2m、水中速度毎秒1mで15.5秒で到達できる範囲を描画してみました。

URLリンク(i.imgur.com)

ご指摘の通り、対角線上に所要到達時間最大点があるというのは間違いであると確認できました。

138:132人目の素数さん
20/02/04 05:49:23 W/1szoPy.net
>>133
すいません、プログラムにバグを発見したので撤回します。m(__)m

139:132人目の素数さん
20/02/04 06:22:55.67 W/1szoPy.net
気づいたバグを修正して長方形プールで描画しました。
対角線と対角二等分線をあわせて描画しました。

横20m縦30mのプールで陸上速度毎秒2m、水中速度毎秒1mで26秒で到達できる範囲
URLリンク(i.imgur.com)
横30m縦20mのプールで陸上速度毎秒2m、水中速度毎秒1mで26秒で到達できる範囲
URLリンク(i.imgur.com)
>127の直感通り、対角の2等分線上に所要時間最頂点が位置するようです。

140:132人目の素数さん
20/02/04 06:27:09.62 W/1szoPy.net
>>132
レスありがとうございます。
立法体なのでp≧q≧rという仮定が許されるということと理解しました。

141:132人目の素数さん
20/02/04 07:24:13 W/1szoPy.net
>81の問題を立方体から直方体に拡張して考えてみた。

オリンピックサイズ・プール50m×25mで水深2.5mの水の入った直方体プールの一つの角に監視員を置く。

この監視員は世界記録で直方体の面上や水中を移動するものとする。
水泳100m自由形 46秒91で水中を移動
陸上100m9秒58でプールを囲む面を」移動
この監視員がプールのどこへでも到達しうるには,最短で何秒必要か計算せよ。


立方体でなくて直方体のときには、所要時間最大の点は原点と最遠の頂点を結ぶ線上にはない、ということを教えていただいたのでプログラムを組み直した。

所要時間最大点の座標
par
[1] 49.980916 24.788643 2.288643

所要時間
$value
[1] 5.552414

という数値がでてきた。

142:132人目の素数さん
20/02/04 07:48:42 W/1szoPy.net
探索初期値設定により、結果がばらつくけど

多数派意見(?)は

> opt
$par
[1] 49.06521 23.86881 1.36881

$value
[1] 5.855706

$counts
function gradient
256 NA

$convergence
[1] 0

$message
NULL
になった。

確かに、この方が到達時間が長い。

143:132人目の素数さん
20/02/04 10:56:49 3+QKrfHh.net
>>128
??の交点が頂点(a,b)にある角の二等分線上lなのでt1での???の交点もt2での???の交点もl上。
よくよく考えたらt1=t2だった。

144:132人目の素数さん
20/02/04 11:21:43 3+QKrfHh.net
>>139
ウソ書いた。
a,bの大小とt1,t2の大小は一致するでした。

145:イナ
20/02/04 11:44:43.02 +IjSdzOF.net
>>129問題(前スレ760)
向こう側の縁からθの角度で飛びこんだ監視員が泳ぐ時間は、
(10-x/√2)/sinθ(秒)
突き当たりを直角に曲がって飛びこむまでの時間は、
{10-(10-x/√2)(1+1/cosθ)}(1/2)
=5-(5-x/2√2)(1+1/cosθ)
=-5/cosθ+x/2cosθ√2+x/2√2(秒)
これらと最初のコーナーまでの5秒を足すと救出時間は、
(1/sinθ)(10-x/√2)-(1/2cosθ)(10-x/√2)+(1/2)(10+x/√2)
微分すると、
-1/sinθ√2+1/2cosθ√2+1/2√2=0
-2/sinθ+1/cosθ+1=0
-2cosθ+sinθ+sinθcosθ=0
(2-sinθ)cosθ=sinθ
cosθ=sinθ/(2-sinθ)
sin^2θ+{sinθ/(2-sinθ)}^2=1
sin^2θ(2-sinθ)^2+sin^2θ=(2-sinθ)^2
4sin^2θ-4sin^3θ+sin^4θ+sin^2θ=4-4sin^2θ+sin^4θ
4sin^3θ-9sin^2θ+4=0
sin^3θ-(3sinθ/2)^2+1=0
sin^3θ+1=(3sinθ/2)^2
3sinθ/2-√(sin^3θ+1)=0になるθを探すと、
θ=57.465773447629°のとき、
(3/2)(sin57.465773447629°)-√((sin57.465773447629°)^3+1)=0となり極小値を与える。
すなわち向こう側の縁から57.465773447629°の方向に飛びこむと最速で救出できる。
監視員が最初にいるコーナーの対角コーナーから、泳ぐ経路に引いた垂線が、向こう側の縁となす角は、
90°-57.46773447629°=32.53226552371°
対角線となす角は、
45°-32.53226552371°=12.46773447629°
監視員が10秒過ぎてから救出地点に達するまでに泳いだ時間t(秒)または距離t(m)は、
(10√2-10-t)sin12.465773447629°=t
(10√2-10)sin12.465773447629°=t+tsin12.465773447629°
t=(10√2-10)sin12.465773447629°/(1+sin12.465773447629°)
=0.735371693
到達時間10+t=10.735371693(秒)

146:132人目の素数さん
20/02/04 12:03:49.77 3+QKrfHh.net
xで微分してそれが0になるθ探してどーするん?
微分の意味がまるで分かってない。
結局意味もわからずやり方だけ覚えたらいいと思ってるから一つも前進しない。

147:イナ
20/02/04 12:39:12.69 +IjSdzOF.net
>>141問題(前スレ760)再考察。
救出する最遠方地点は監視員が最初にいる位置から対角線上x(m)にあると見て、向こう側の縁からθの角度で飛びこんだ監視員が泳ぐ時間は、
(10-x/√2)/sinθ(秒)
突き当たりを直角に曲がって飛びこむまでの時間は、
{10-(10-x/√2)(1+1/cosθ)}(1/2)
=5-(5-x/2√2)(1+1/cosθ)
=-5/cosθ+x/2cosθ√2+x/2√2(秒)
これらと最初のコーナーまでの5秒を足すと救出時間は、
(1/sinθ)(10-x/√2)-(1/2cosθ)(10-x/√2)+(1/2)(10+x/√2)
xで微分し、
-1/sinθ√2+1/2cosθ√2+1/2√2=0とすると、
-2/sinθ+1/cosθ+1=0
-2cosθ+sinθ+sinθcosθ=0
(2-sinθ)cosθ=sinθ
cosθ=sinθ/(2-sinθ)
sin^2θ+{sinθ/(2-sinθ)}^2=1
sin^2θ(2-sinθ)^2+sin^2θ=(2-sinθ)^2
4sin^2θ-4sin^3θ+sin^4θ+sin^2θ=4-4sin^2θ+sin^4θ
4sin^3θ-9sin^2θ+4=0
sin^3θ-(3sinθ/2)^2+1=0
sin^3θ+1=(3sinθ/2)^2
3sinθ/2-√(sin^3θ+1)=0になるθを探すと、
θ=57.465773447629°のとき、
(3/2)(sin57.465773447629°)-√{(sin57.465773447629°)^3+1}=0となり極小値を与える。
すなわち向こう側の縁から57.465773447629°の方向に飛びこむと最速で救出できる。
監視員が最初にいるコーナーの対角コーナーから、泳ぐ経路に引いた垂線が、向こう側の縁となす角は、
90°-57.46773447629°=32.53226552371°
対角線となす角は、
45°-32.53226552371°=12.46773447629°
監視員が10秒過ぎてから救出地点に達するまでに泳いだ時間t(秒)または距離t(m)は、
(10√2-10-t)sin12.465773447629°=t
(10√2-10)sin12.465773447629°=t+tsin12.465773447629°
t=(10√2-10)sin12.465773447629°/(1+sin12.465773447629°)
=0.735371693
到達時間10+t=10.735371693(秒)

148:132人目の素数さん
20/02/04 12:54:31.79 VWzue31P.net
>>143
直前のレス読んでるか?
xで微分してそれが0になるところ求めてどーするん?
それで何で所要時間が最小になるθが見つかるの?
微分というのが何か?
それで何故最小値が求まるのかという当たり前の理屈が分かってないから答えられないんだよ。
何度も解答見直した?
xで微分した。
=0としてθについて解いた。
あれ?なんでコレで答え見つかるんだっけ?と自分に問い直してみないの?

149:イナ ◆/7jUdUKiSM
20/02/04 13:38:50 +IjSdzOF.net
>>143
>>144前スレ760を見たら、なんで答えがみつかるかを説明せよとは問われてない。
ただ最短となる時間を計算せよとある。
だから計算した。そんなけ。AO入試ってなんだ? と思って調べたら、論文みたいだった。答えはこうじゃないかああじゃないかと思案検討し計算する姿勢が求められてるんじゃないかと思う。
なんでxで微分して答えがみつかるか知りたい気もするし、べつに知りたくない気もする。
入水角度が60°のときも計算した。60°のときは計算しやすいけど最短でということでは角度が甘いと思った。

150:132人目の素数さん
20/02/04 13:51:00 3+QKrfHh.net
>>145
なんで答えが微分でもとまるか書けといわれてないから書かなくていい、分かってなくていいって思ってるからいつまで経ってもデキフるようにだけならないんだよ。
思案検討ってなんで微分したら答えがわかるという事は思案したの?
してないよね?
なーんにも考えてないよね?
なんとなく最小値求める時は微分。
でもθで微分なんてできない。
よーしxで微分してみよう!
おぉできた。
60°っぽいぞ!
きっとみんなの答えより正確なハズだ!
カッコいい!オレ!
‥‥
そういうのは思案とはいわん。

151:132人目の素数さん
20/02/04 14:42:24.87 VWzue31P.net
>>81です。>>119さんの解答がほぼ用意してた解答です。
ひとつだけコメント。
たとえば経路a: (0,0,0) -> (x,y,0) -> (p,q,r)において(x,y,0)についての極小値の出し方なのですが、
これは距離関数d(A,P)のPについての全微分が
d d(A,P)=e(A,P) dP (e(A,P)はAPベクトルと同じ向きの単位ベクトル、以下同じ)
になることを用いると意味がはっきりします。
この時の所要時間Tは(p,q,r)をAとおいて陸上の速度をv、水中の速度をwとして
T = d(O,P)/v + d(A,P)/w
なので
dT = (e(O,P)/v + e(A,P)/w)dP
となります。
これが任意のz=0内のdPについて0になるのはe(OP)/v + e(A,P)/wがxy平面の法線ベクトルと平行になるときで、
すなわちe(OP)/v + e(A,P)/wのxy平面への射影が0になるときです。
これはAxyから平面へおろした垂線の足HがOPの外分点であり、
かつe(A,P)をxy平面へ射影したものの長さがw/v=1/2となるとき、すなわち∠APHが60°となるときです。
よってこの場合PはHからOの方向へPH/√3だけ移動した点なので
f1(p,q,r)=(√(p^2+q^2)-r/√3)/2 + 2r/√3/1 = √(p^2+q^2)/2 + √3/2r
が経路aの極小値です。
経路b,cは文字入れ替えるだけ、経路dについては同様に考えて
f4(p,q,r)=√((10+q)^2+r^2)/2 + √3/2(10-p)
となります。

152:イナ ◆/7jUdUKiSM
20/02/04 15:38:31 +IjSdzOF.net
>>145
>>146困ったら微分。
それしかない。
60°のときを考えるのはだれでもする。けどそのまま答えは60°のときとするのは高校生まで。
大人は困ったら微分する。
60°のときじゃない、と思ってθと置いたわけで、苦しんで微分するために置いたんじゃない。
未知数xの方程式を微分して極値を与える角度θを出したら60°になるよりちょっと手前で入水したらいいとわかった。問題ない。

153:132人目の素数さん
20/02/04 16:10:36 3+QKrfHh.net
>>148
ちょっと確認させて欲しい。

> 未知数xの方程式を微分して極値を与える角度θを出したら60°になるよりちょっと手前で入水したらいいとわかった。問題ない。

コレは本気で書いてるのか、それともココで引き下がったらレスバに負けるから間違ってるの承知でむりくり押し通してやろうと考えてるのかどっち?
もしかしてxで微分してもいいと本気で思ってるん?
xで微分しようがθで微分しようが好きな方で微分していいと本気で思ってるの?

154:イナ
20/02/04 17:11:43.29 +IjSdzOF.net
>>148
>>149どうやって解いたんだ? と思って解きなおしたら何度やっても解けなくて、計算間違いかなぁと思ってあきらめかけた。
計算間違いじゃなくxで微分して極小値を与える角度θを出したんだとわかった。
一度はやろうとしたxとθの両方で微分するとどうなるか、またθで微分するとどうなるか、ぜひやってみてほしい。
xで微分して極小値を与える角度θを出して救出時間を出したのはまだ俺だけだと思う。今のところ正しいかどうか比べるものがない。なぜかみんな三次元がいいとか言って潜水してしまって、無人島にいる感じ。入水角度θ=60°のときより速いことは調べた。

155:132人目の素数さん
20/02/04 17:27:27.89 3+QKrfHh.net
>>150
だからxで微分しても正しい答えはでないと何度も指摘してるじゃん?
入水角が60°でない経路は最小にはなり得ません。
もし本気で出てる答え5+10/√3より小さい答えが出たと言い張るなら既出の答えの最小到達時間が最大になる点
(5(1+1/√3),5(1+1/√3))
=(7.886751345948, 7.886751345948)

5+10/√3 = 10.773502691896
より先に到達できる経路を明示しないとダメ。
わかる?明示?
要するにx=x.xxx‥の地点から入水したら10.77350‥より早く到達できるというx.xxx‥を一つでも見つければいい。
まぁやってごらんなさいな。

156:132人目の素数さん
20/02/04 17:32:07.28 W/1szoPy.net
>>148
びぶんのことはびぶんでやれ、という高木貞治を想い出したよ。

157:132人目の素数さん
20/02/04 18:06:56 VWzue31P.net
7.886751345948/sin(57.465773447629deg)+7.886751345948(1-1/tan(57.465773447629deg))/2
=
10.7826518083

(10-7.886751345948)/sin(57.465773447629deg)+(10-(10-7.886751345948)(1+1/tan(57.465773447629deg)))/2+5
=
10.7759541902

いずれの経路でも 10.773502691896秒より前に到達できない。

158:イナ
20/02/04 18:49:28.88 +IjSdzOF.net
>>150
>>61到達時間10+t=10.735371693(秒)
<10.7735……
入水角度θ(°)、到達時間10+t(秒)、あとは─。
>>151入水地点は、
つきあたりからの距離、
10-(10-x/√2)(1+cosθ/sinθ)に、
θ=57.465773447629°と、
xを代入するとわかる。
xは到達時間、
5+{10-(10-x/√2)(1+cosθ/sinθ)}(1/2)+(10-x/√2)(1/sinθ)=10.735371693にθ=57.465773447629°を代入し、
5+5-(5-x/2√2)(1+cos57.465773447629°/sin57.465773447629°)+(10-x/√2)(1/sin57.465773447629°)=10.735371693
=5+x/2√2+(x/2√2)(0.637910393)-5(0.637910393)+(10-x/√2)(1/sin57.465773447629°)=10.735371693
求めたxを代入すると入水地点もわかるはず。

159:132人目の素数さん
20/02/04 18:54:24.56 3+QKrfHh.net
こいついわれてる事全く理解してない。
真性のバカなんだな。

160:132人目の素数さん
20/02/04 18:57:33.41 W/1szoPy.net
wolframに∂t/∂x=0, ∂t/∂y=0を解いてもらおうと
x/(2 Sqrt[x^2 + y^2]) + (-p + x)/Sqrt[r^2 + (-p + x)^2 + (-q + y)^2]=0
y/(2 Sqrt[x^2 + y^2]) + (-q + y)/Sqrt[r^2 + (-p + x)^2 + (-q + y)^2]=0
を入力すると
r = -(1.73205 sqrt(p^2 + q^2) (p - x))/p, y = (q x)/pと返ってきてx,yについて解いてもらえなかった。

161:132人目の素数さん
20/02/04 19:18:15 VleZ36bS.net
xy平面において、x軸上の正の部分のみ、速度 v、その他の領域は速度 1 で移動できるものとする。
原点にいる人物が、目標地点(cosθ,sinθ) に到達すべく、移動する。
この時、より短時間で目標地点に到達するには、次の戦略αとβ、どちらが有利かを考える。
戦略α:現地点から、直接目標地点の方向へ速度 1 で移動する。
戦略β:x軸に沿って速度 v で移動する。

ε を正の小さな量とする。戦略αあるいはβ取って移動を開始し、εの時間がたった時のそれぞれの到達地点をA,Bとすると
A(εcosθ,εsinθ)、B(vε,0)
目標地点までの距離は、それぞれ、1-ε、√((vε-cosθ)^2+sin^2θ) となるが、さて、どちらが小さいか?
二乗したもの同士の差をとって比べてみると、
(1-ε)^2-((vε-cosθ)^2+sin^2θ) = 1-2ε+ε^2 -v^2ε^2+2vεcosθ-1 = ε(2v cosθ-2)+(1-v^2)ε^2
εは小さな正の量としているので、二次の項を無視すると、cosθ>1/v で 
1-ε>√((vε-cosθ)^2+sin^2θ) となる。
つまり、目的地との方向のずれがθあるものの、v 倍の速度で移動できるとき、 cosθ>1/v を
満たすなら、そのコースは直接目的地に向かうより有利である とえる。

この結論は、θとvのみが関与し、他の次元にも適用可。

162:132人目の素数さん
20/02/04 19:18:48 VleZ36bS.net
と同時に、この類いの問題に対し、次の戦略が最速であることを示す。

現在地から目標地点へのベクトル、あるいは、その方向への単位ベクトルをp↑、
選択可能ないくつかの速度ベクトルv↑が与えられたら、
内積 p↑・v↑ が最大になる速度ベクトルv↑ に沿うコースこそ最速コースである。

この戦略に従って、四次元プールの問題を考えるなら、微分は必要なくなる。
(この戦略の背景は、微分の考え方そのものであるが、結論のみを利用するならば、微分は不使用)

目的地を、(p,q,r) ただし、対称性から p≧q≧r として考える。
この方向への単位ベクトルは(p/D,q/D,r/D) 但し、D=√(p^2+q^2+r^2)
直接この方向へ向かう場合、速度ベクトルも(p/D,q/D,r/D)なので、内積は、1
縁を進む場合は、三つの平面の内どれか。p≧q≧r という条件では、平面z=0 上に、最適コースが存在し、
それは、(2p/d,2q/d,0) 但し、d=√(p^2+q^2)

時刻 t まで、移動したとき、(2pt/d,2qt/d,0)に移動しているので、目的地へのベクトルは (p-2pt/d,q-2qt/d,r)
速度ベクトルは(2p/d,2q/d,0)であり、この時、この両者の角度がπ/3だという方程式を解くと、
t=(1/2)d±((√3)/6)r が得られる。マイナスの方を代入して整理すると、残りの距離は((2√3)/3)rで、
トータル (1/2)d-((√3)/6)r+((2√3)/3)r=(1/2){√(p^2+q^2)+(√3)r} の時間がかかる

163:132人目の素数さん
20/02/04 19:19:23 VleZ36bS.net
以上は、向こう側の「縁」を利用しない場合の最速コースについての議論。
向こう側の縁を利用する場合は、まずは、平面x=10へ下ろした時の足の座標、(10,q,r)へ向かうコースを考える。
立方体の表面しか移動できないので、展開図上で考えることになるが、直角を挟む2辺が10+rとqである直角三角形の
斜辺上にあたるコースを辿りながら、向こう側の平面に到達したときに、(p,q,r)を目指すことになる。

これは、無限に広がるプール、ただし、三つの平面x=0、y=0、z=0上だけは、
速度2で歩けるという条件で、(10+r,q,10-p)を目標にするのと同じ事になる。

こう考えると、先ほどの結果がそのまま使えて、このコースをとった場合のトータル時間は、
(1/2){√((10+r)^2+q^2)+(√3)(10-p)}
最も時間がかかる地点の座標には、(1/2){√(p^2+q^2)+(√3)r}=(1/2){√((10+r)^2+q^2)+(√3)(10-p)}

という条件が加わる。面倒になってきたので、細かいことは省略するが、上の式で、p=q=rとして
方程式を解くと、p=q=r=(5/6)(15-4√6+√(249-96√6))
(これは、>>119さんの結果と一致)

最後端追ったが、以上は、微分を使わない方法である。

164:イナ ◆/7jUdUKiSM
20/02/04 19


165::48:21 ID:+IjSdzOF.net



166:132人目の素数さん
20/02/04 19:52:12 3+QKrfHh.net
(7.886751345948,7.886751345948)に10.773502691896秒以内に到達できる地点を探せと言われて7.886751345948の全く出てこない式を立てるのはどういう頭の構造してんの?

167:132人目の素数さん
20/02/04 20:14:28 W/1szoPy.net
>>158
p≧q≧r という条件では、平面z=0 上に、最適コースが存在し、
までは理解できるのですが、
入水する点の座標が
 (2p/d,2q/d,0) 但し、d=√(p^2+q^2)
が最適とはどうして分かるのでしょうか?

168:イナ
20/02/04 20:48:03.71 +IjSdzOF.net
>>160
>>161
救出地点まで遠いほうの縁からの距離は、
11.309854/√2=7.99727446(m)
図を描いて8mぐらいかなぁと思ってたからいい値だと思った。
7.88……だと入水角度も入水地点も変わると思う。
7.88……がどうやって出た値かだよね。
xとθを両方とも微分するか、θで微分して、
x/√2=7.88……ってことなら、あるいはありうるかも。わるい値じゃない。

169:132人目の素数さん
20/02/04 21:21:08 3+QKrfHh.net
>>143
まぁしつこいからマジメにつっこむと

>これらと最初のコーナーまでの5秒を足すと救出時間は、
(1/sinθ)(10-x/√2)-(1/2cosθ)(10-x/√2)+(1/2)(10+x/√2)
xで微分し、
-1/sinθ√2+1/2cosθ√2+1/2√2=0とすると、

xで微分してそれが0になるθとはつまり到達地点(x,x)がどこにあろうと到達時間が一定であるようなθを探している事になる。
そんな地点は存在しないし実際wolfram大先生にグラフ書いてもらってもそんなθは存在してない。

URLリンク(www.wolframalpha.com)

にもかかわらずどこからかコレが解

θ=57.46773447629

なる謎の数値を導き出す。
そしてこの謎の数値を元にした到達時間の最大値を出して、それが既出の数値より小さいから既出の値は間違ってると騒ぎ立てる。
そしてだったら既出の最大地点
(7.886751345948, 7.886751345948)
に既出の最小値10.773502691896より早く到達できる経路を明示してみろというと、この7.886751345948が全く出てこない式を立式して10.773502691896より小さいと言って得意顔。
バカさの次元の桁が違う。

170:132人目の素数さん
20/02/04 21:23:45 VleZ36bS.net
>>162
>> 入水する点の座標が
>>  (2p/d,2q/d,0) 但し、d=√(p^2+q^2)
>> が最適とはどうして分かるのでしょうか?

なるほど、紛らわしい書き方をしてしまったようです。申し訳ありません。
(2p/d,2q/d,0) というのは、入水地点ではなく、速度ベクトルです。

原点から、この方向に、時刻0 から 時刻 t まで移動すると、
(2pt/d,2qt/d,0)
に到ります。この地点から、目的地をみると、(p-2pt/d,q-2qt/d,r)という方向にあります。

このまま、この速度を維持したまま、進んだ方がいいか、戦略をβからαに切り替えた方がよいか、
その判定に用いるのが、
「cosθ>1/v」
という式です。
この式が不成立になる時刻を求めるための、方程式が
((p-2pt/d,q-2qt/d,r),(2p/d,2q/d,0)) =(1/2)*|(p-2pt/d,q-2qt/d,r)|*|(2p/d,2q/d,0)|
です。(左辺は内積の式であり、右辺は、ベクトルの大きさの積とcos(π/3)で構成されています。)
ここで求まった時刻を、(2pt/d,2qt/d,0) に代入すると、入水地点がわかります。

171:132人目の素数さん
20/02/04 21:24:31 THlBhxRo.net
>>143で救出までに最も長い時間
> 到達時間10+t=10.735371693(秒)
がかかる、と言っている点の座標はどこなん?

まあ、どこだろうが
> θ=57.465773447629°のとき、
の角度で行くより短時間のコースはあるわけだが

172:イナ ◆/7jUdUKiSM
20/02/04 23:15:55 +IjSdzOF.net
>>163
>>166救出地点まで遠いほうの縁からの距離は、
11.309854/√2=7.99727446(m)
救出地点を座標でいうと、最初に監視員がいる地点を原点(0,0)、つきあたり方向にy軸をとり、
-xの方向に直角に曲がってy軸から6.71971502mの地点から、
θ=57.7465773447629°の方向に入水して、原点を出てから、10.735371693秒後に、
(x,y)=(-7.99727446,7.99727446)に到達する。

173:132人目の素数さん
20/02/04 23:34:25 3+QKrfHh.net
>>167
> θ=57.7465773447629°の方向に入水して、原点を出てから、10.735371693秒後に、
> (x,y)=(-7.99727446,7.99727446)に到達する。

じゃあその(7.99727446, 7.99727446)の地点に60°で見込む点
(10, 6.841000330368)
から入水して何秒


174:かかるかちゃんと計算してみたかね? その数値は10.735371693より大きいかね? そういう当たり前の確かめを一つもしないからダメダメなんだよ。



175:132人目の素数さん
20/02/04 23:47:26 THlBhxRo.net
>>167
座標
> (x,y)=(-7.99727446,7.99727446)に到達する。
までの最短時間は
(10+7.99727446-(10-7.99727446)cot(π/3))/2+(10-7.99727446)/sin(π/3)/1≒7.3305
になり、、
(10+7.99727446-(10-7.99727446)cot(θ))/2+(10-7.99727446)/sin(θ)/1
θ=57.7465773447629°

> 10.735371693秒
より短いな

176:
20/02/05 00:33:59.16 C9wRmgDi.net
>>167
>>168第Ⅰ象限には水がないという設定です。
最速になる角度を探したんでほかの角度は60°と90°と45°ぐらい。
入水地点を決めてから角度を決めたんじゃなく、微分して角度が決まってから入水地点を計算した。

177:132人目の素数さん
20/02/05 01:00:30 gfGkl938.net
>>170
こんだけ言われてまだ何言われてるか理解できてないの?
どこまで頭悪いの?
みんなが60°で入水が最速である理由をあれだけ手を変え品を変えいろんな方法で示してたよね?
そのどれ一つとして理解できなかったとしても、そして自分が60°以外の角でより早い経路をみつけたとしても、最低限まず自分が見つけた地点に最速でいける方法がその角度なのか確かめてみろと言ってるんだよ。
なんでそんな簡単なことがわからん?
何よりそんな事まず自分で思いつかないの?
君のそのアポレスがどんだけスレの流れ乱してるからわからんの?
そのアポレスいつまで続けるん?
もう出てけよ。

178:132人目の素数さん
20/02/05 01:06:11 OkeImVJQ.net
思付直感数学

179:イナ ◆/7jUdUKiSM
20/02/05 01:55:16 C9wRmgDi.net
>>170
問題見て最初に思いついたのがたしか60°だった。
縁と水中で速さが2:1だから。
その直感は正しいと思ってたけど、微分してθ=57.465773447629°と出て、到達時間を計算した。まだこの段階で半信半疑。
むしろ60°のとき計算したら10秒735切るぐらい速いはずと思って計算したら、
10秒9……って出て、あれ!? ってびっくりした。
θ=57.465773447629°のほうがθ=60°のときよりコンマ2秒速かった。
今は結果を受け入れてる段階。

180:132人目の素数さん
20/02/05 06:23:22 +pUSmyEU.net
>>165
解説ありがとうございました。
最後の方程式をWolframに解いてもらったら
人間技では扱えそうにない答になりました。

Solve[{p - 2 p (x/d), q - 2 q (x/d), r} . {2 (p/d), 2 (q/d), 0} == Norm[{p - 2 p (x/d), q - 2 q (x/d), r}] (Norm[{2 (p/d), 2 (q/d), 0}]/2), x, MaxExtraConditions -> Automatic]


x = (d^3 p^2 (q/d)^2 + d^3 p^2 (p/d)^2 + d^3 q^2 (p/d)^2 + d^3 q^2 (q/d)^2 - sqrt(-d^6 p^2 (r)^2 (q/d)^4 - 2 d^6 p^2 (r)^2 (p/d)^2 (q/d)^2 +
d^6 (-p^2) (r)^2 (p/d)^4 - d^6 q^2 (r)^2 (p/d)^4 - 2 d^6 q^2 (r)^2 (p/d)^2 (q/d)^2 - d^6 q^2 (r)^2 (q/d)^4 + 4 d^4 p^4 (r)^2 (q/d)^2 + 4 d^4 p^4 (r)^2 (p/d)^2 + 8 d^4 p^2 q^2 (r)^2 (p/d)^2 + 8 d^4 p^2 q^2 (r)^2 (q/d)^2 + 4 d^4 q^4 (r)^2 (p/d)^2 + 4 d^4 q^4 (r)^2 (q/d)^2) - 4 d p^4 -
8 d p^2 q^2 - 4 d q^4)/(2 (d^2 p^2 (q/d)^2 + d^2 p^2 (p/d)^2 + d^2 q^2 (p/d)^2 + d^2 q^2 (q/d)^2 - 4 p^4 - 8 p^2 q^2 - 4 q^4))

x = (d^3 p^2 (q/d)^2 + d^3 p^2 (p/d)^2 - d^3 q^2 (p/d)^2 + d^3 q^2 (q/d)^2 + sqrt(-d^6 p^2 (r)^2 (q/d)^4 - 2 d^6 p^2 (r)^2 (p/d)^2 (q/d)^2 +
d^6 (-p^2) (r)^2 (p/d)^4 - d^6 q^2 (r)^2 (p/d)^4 - 2 d^6 q^2 (r)^2 (p/d)^2 (q/d)^2 - d^6 q^2 (r)^2 (q/d)^4 + 4 d^4 p^4 (r)^2 (q/d)^2 + 4 d^4 p^4 (r)^2 (p/d)^2 + 8 d^4 p^2 q^2 (r)^2 (p/d)^2 + 8 d^4 p^2 q^2 (r)^2 (q/d)^2 + 4 d^4 q^4 (r)^2 (p/d)^2 + 4 d^4 q^4 (r)^2 (q/d)^2) - 4 d p^4 -
8 d p^2 q^2 - 4 d q^4)/(2 (d^2 p^2 (q/d)^2 + d^2 p^2 (p/d)^2 + d^2 q^2 (p/d)^2 + d^2 q^2 (q/d)^2 - 4 p^4 - 8 p^2 q^2 - 4 q^4))

181:132人目の素数さん
20/02/05 08:43:38.73 t1CV2afM.net
>>174
なぜ FullSimplify しない?
X=の最初の式を%とすると
FullSimplify[%, d > 0 && p > 0 && q > 0 && r > 0]
1/6 d (3 + (Sqrt[3] r)/Sqrt[p^2 + q^2])

182:132人目の素数さん
20/02/05 09:26:37.46 VrbXRcrj.net
>>174
165です。これは自戒を含めてのコメントになりますが、あの方程式は、手で簡単に計算できます。
お試しください。

183:132人目の素数さん
20/02/05 09:41:51 PzHdrrq1.net
>>175
ありがとうございます。
その機能をはじめて知りました。

184:132人目の素数さん
20/02/05 14:10:45 VrbXRcrj.net
>>174
「お試しください」と書きましたが、実際にお示しします。

あの戦略からの要請、二つのベクトル、P-Vt と V のなす角度がπ/3であるという方程式は

(P - V t).V=(1/2)*|(P -V t)|*|V|

と書けます。ピリオドはベクトルの内積、絶対値記号はノルムを表す記号としてます。
 >>165では、無理矢理成分表示で、式を表していたため、見苦しくなりましたが、最初からこう書けばよかったですね。
|V|=2、P.V=p*(2p/d)+q*(2q/d)+r*0=2d、P.P=p^2+q^2+r^2=d^2+r^2 に注意して変形すると

P.V-t*V.V = |P -V t|
2d-4t = √(P.P-2t*P.V+4t^2)
16t^2-16td+4d^2=d^2+r^2-4td+4t^2
12t^2-12td+3d^2-r^2=0
t=(1/12){6d±√(36d^2-12(3d^2-r^2))}=(1/12){6d±(2√3)r}
と、言う具合に、簡単に t を求めることができます。

185:132人目の素数さん
20/02/05 14:25:04 t1CV2afM.net
二次元平面上に無限に続く、1オームの抵抗で作られた正方形の格子において、
ナイトの動き(桂馬飛び)の位置にある2つのノード間の抵抗は
4/π-1/2 オームであることを示せ。
(Google入社試験 - 難易度を下げるために一部簡単化)

186:132人目の素数さん
20/02/05 14:36:16 298bnSpu.net
>>179
コレは電気抵抗の知識なくても解けるの?
Googleの試験だからそこは知らなくても推定しろなのかな?
とりあえずググったら長さに比例して断面積に反比例するというのしか見つからない。

URLリンク(kenkou888.com)

187:132人目の素数さん
20/02/05 14:38:21 298bnSpu.net
あれ?
格子点と格子点を結ぶように1Ωの抵抗が繋がってるという意味?
もしかして?

188:132人目の素数さん
20/02/05 14:55:22 t1CV2afM.net
>>181
そうです。

>>179
の補足ですが、1オームの二次元無限格子の隣接ノード間の抵抗は
対称性の意味を知っていれば中学生で出せます。
より一般的には、任意の二つのノード間の抵抗は
有理数+有理数×1/πであらわされることを示してください。

189:132人目の素数さん
20/02/05 15:02:45 t1CV2afM.net
>>180
前提となる物理知識は、中学生レベルのオームの法則とキルヒホッフの法則のみです。

190:132人目の素数さん
20/02/05 15:28:22 298bnSpu.net
つまりijにおける電位をe[i,j]として(0,0)から-1A、(2,1)に+1A流入してるとして
e[i+1,j]+e[i-1,j]+e[i,j+1]+e[i,j-1]-4e[i,j]
=δi0δj0-δi2δj1
のときのe[2,1]-e[0,0]かな?
留数定理の香りがする。

191:132人目の素数さん
20/02/05 22:11:30 +pUSmyEU.net
>>178
どうもありがとうございました。
d=√(p^2+q^2)の情報なしでwolframに入力したので複雑な答で表示されたのだと理解しました。

192:132人目の素数さん
20/02/05 23:39:40.39 t1CV2afM.net
>>184
ヒント
ローラン展開による母関数
E(z,w)=Σ[i,j:整数] e(i,j) z^i w^j

193:イナ
20/02/06 04:43:23.90 Mv+y98sK.net
>>173だれか入水角度60°の決め打ちじゃなくて、微分してみたって人いないかなぁ。

194:132人目の素数さん
20/02/06 06:18:07.30 Ya801udz.net
>>187
前スレで
スレリンク(math板:807番)
が偏微分で極値を出している。
プログラムでの数値解と合致した。
立方体の方の計算�


195:ノうつったら。 オリンピップールの直方体の方が計算のしがいがあると思う。



196:132人目の素数さん
20/02/06 09:32:28.14 tNI6h0TT.net
>>188
前スレの807を書いた者だが、極値は二つ出たが、807では採用する方を誤ってしまった。
訂正内容を824に記してあるので、807を見る場合は、824もセットで見て欲しい。

197:132人目の素数さん
20/02/06 10:42:10.03 5WVjoOPr.net
>>187
偏微分以外は全部決め打ちと思ってる時点でもうこのスレでレスできるレベルに到達してない。

198:132人目の素数さん
20/02/06 22:27:39.52 eS4p1xAB.net
> だれか入水角度60°の決め打ちじゃなくて、微分してみたって人いないかなぁ。
イナ以外で60°という角度を使っている人は、思い付きだけで使っているわけでなく、
書くまでもなく計算したり、スネルの法則等の定理を用いて60度を導出しているんだからな

199:132人目の素数さん
20/02/06 23:33:31 Ya801udz.net
タクシー料金の改訂

# 京浜地区
# 旧運賃(小型)
F1=740 # 初乗運賃 Fair
D1=2000 # 初乗り距離 initial Distance
C1=90  # 加算運賃 Charge by distance
B1=288 # 加算距離 charge By distancce

# 新運賃
F2=500
D2=1200
C2=100
B2=264

URLリンク(travel.watch.impress.co.jp)

距離と新旧運賃および差額をグラフにしてみた。
運賃改定率が8.88%と記載されているのだがどうやって計算するんだろう?

200:132人目の素数さん
20/02/07 01:43:45 YN6u30Ej.net
>>187
横に10m走って縦に方向を変えてプールサイドからθの角度で座標(p,q)に向かって飛び込む時の所要時間は

10/2+((p-10)/tan(θ)+q)/2+sqrt((10-p)^2+((10-p)/tan(θ))^2)

角度を決めたら縦方向の走行距離が決まってしまう。

これを微分すればいい

D[5 + (q + (-10 + p) Cot[θ])/2 + Sqrt[(10 - p)^2 + (10 - p)^2 Cot[θ]^2], θ] をWolfram先生にお願いすると

導関数は((10 - p) Csc[θ]^2)/2 - ((10 - p)^2 Cot[θ] Csc[θ]^2)/Sqrt[(10 - p)^2 + (10 - p)^2 Cot[θ]^2]

んでもって

solve ((10 - p) Csc[θ]^2)/2 - ((10 - p)^2 Cot[θ] Csc[θ]^2)/Sqrt[(10 - p)^2 + (10 - p)^2 Cot[θ]^2]==0 for θ

導関数が0になるθを求めてもらうと

θ = π/3 θ = -π/3

マイナスだとプールに飛び込めないから、θ = π/3

目的の座標に関わりなく60°と算出されました。

201:132人目の素数さん
20/02/07 02:37:34 JwTQ0wHH.net
>>192
8.88%をだしたいのなら、例えば、
100m利用、200m利用、...、6600m利用、6700m利用
の料金の合計を、新旧で比較すると、8.8位のアップになる。

1200m以下だと、新運賃は240円安い
1800m位から、逆転し、その後、じわじわ差が大きくなり、
4200m位から、240円位高くなる。

100mから4200m位をまんべんなく利用する人がいたとすると、この改定により、
利用額の増減はほとんど無いという解釈も可能。

距離が大きくなれば、値上げの効果がどんどん大きくなる。
最終的には、1m辺りの加算運賃の比 90/288 : 100/264 = 33:40
なので、21.212121...%の上昇に近づく。
それが、6.7km辺りでは、8.8%だというだけ。
つまり、8.88位になるよう、最小距離100mと最大距離を6.7kmを恣意的に選んだだけ。
文頭の説明には説得力は全く無い。

恐らく、距離別利用割合のデータに基づいて、新旧の料金比較したのだろう。
この情報が無ければ、8.88%等の数値は出せないと思われる。

202:132人目の素数さん
20/02/07 03:19:17 9IJwzjmO.net
>>179
でけたかも。
まず(0,0)以外で漸化式
4e(i,j)=e(i+1,j) + e(i-1,j) + e(i,j+1) + e(i,j-1)
を満たす列を探す。
e(i,j)=∫[|x|,|y|<π] (1-cos((x+y)i)cos((x-y)j))/(1-cosxcosy)dxdy
がこの条件を満たす。
また|i|,|j|→∞で0に行く。
そこで点i,jに電荷はe[i,j]-e[2-i,1-j]となる。(多分解は一意、ノーチェック)
e[0,0]=0, e[2,1]=32π-4π^2
であるから電位差は64π-8π^2。
e[1,0]=4π^2だから原点から隣接する4点に計16π^2の電流が流れる。
よって求める抵抗値は(32π-4π^2)/16π^2=4/π-1/2である。
またe[i,i]が
e[i,i]=∫(1-cosix))/(1-cos(x)cos(y))dxdy
であるが、yについて先に積分すると
e[i,i]=π∫(1-cosix))/|sin(x)|dx
となり、この値はπの有理数倍になる。
コレと漸化式によりe[i,j]はπとπ^2の有理係数の線形結合である。□
e[i,i]の計算が全く思いつかなかった。
e[i,j]の母関数って作れるのかな?

203:132人目の素数さん
20/02/07 08:18:59 YN6u30Ej.net
>>194
レスありがとうございます。

距離と新旧運賃と差額のグラフのアップロードを忘れておりました。
URLリンク(i.imgur.com)
与えられたデータだけからは平均値上げ率は算出できない思っていたのが確認できました。
ある距離までの乗客数が同じと仮定したときの平均の値上げ率をグラフにすると
URLリンク(i.imgur.com)

> which.min((crs-0.0888)^2)
[1] 6869
> pir(6869)
[1] 0.08882413

6.9キロくらいの平均で8.9%の値上げ率になりました。

計算したひとはこういう数字を使ったのでしょう。

204:イナ
20/02/07 08:40:02.32 VtLCtPNo.net
>>187
>>193
角度を決めたら泳ぐ距離が決まる。θで微分するか、θとxの両方で微分するかってとこですか。

205:132人目の素数さん
20/02/07 10:21:34.08 YN6u30Ej.net
>>197
URLリンク(i.imgur.com)
Oから出発してAを経て角度θで入水してS(p,q)に泳ぐとする
AJの長さをxとすると
tan(θ)=(10-p)/(q-x)だから
x=q-(10-p)/tan(θ)
となり、
所要時間の計算からxは消去できて
 10/2+((p-10)/tan(θ)+q)/2+sqrt((10-p)^2+((10-p)/tan(θ))^2)
となる。
この極値を与えるθはp,qによらないのは>193に書いた通り。

206:132人目の素数さん
20/02/07 15:11:11.89 YN6u30Ej.net
>>197
>角度を決めたら泳ぐ距離が決まる。
違う、角度を決めたら走る距離も泳ぐ距離も決まる

207:132人目の素数さん
20/02/07 15:12:19.07 YN6u30Ej.net
走る距離 10+((p-10)/tan(θ)+q)
泳ぐ距離 sqrt((10-p)^2+((10-p)/tan(θ))^2)

208:132人目の素数さん
20/02/07 20:35:27.63 CyUpE86n.net
>>179の解の一意性の証明ができないなぁ。
昔これエレガントな解答を求むかなんかで
4a[ij]=a[i+1j]+a[i-1j]+a[ij+1]+a[ij-1]
をみたす有界な列は定数に限る事を示せ
の形で出題されて2chにえらいエレガントな解答が上がって数セミに載ったっていう事件があったけど、あれどんな証明でしたっけ?
誰か覚えてます?

209:132人目の素数さん
20/02/07 20:48:28.93 oSzq3jEL.net
>>195
正解です。よく特殊解を探せましたね。
その特殊解を(i',j')個すらして符号を変えて重ね合わせて正規化すれば、
2点(i',j')--(0,0)間に1Aの電流を流した時の電位の式が出ます。
想定していた解答は、2点(2,1)--(0,0)間に1Aの電流を流した時の電位の式
e[i+1,j]+e[i-1,j]+e[i,j+1]+e[i,j-1]-4e[i,j]=δi0δj0-δi2δj1
にexp(√-1 (ix+jy))をかけてi,jで和を取ると
(exp(-√-1 x)+exp(√-1 x)+exp(-√-1 y)+exp(√-1 y)-4)E(x,y)=1-exp(√-1 (2x+y))
(ここで E(x,y)=Σ[i,j:整数] e[i,j]


210:exp(√-1 (ix+jy)) と置く) より E(x,y)=(1-exp(√-1 (2x+y)))/(2cosx+2cosy-4) これをフーリエ級数の公式(留数定理) e[i,j]=(1/(2π)^2)∫[0,2π]∫[0,2π]E(x,y)exp(-√-1 (ix+jy))dxdy を用いて逆変換すると、(2,1)--(0,0) 間の電位は e[2,1]-e[0,0]=(1/(2π)^2)∫[0,2π]∫[0,2π](exp(-√-1 (2x+y))-1)(1-exp(√-1 (2x+y)))/(2cosx+2cosy-4) dxdy =(1/(2π)^2)∫[0,2π]∫[0,2π] (1-cos(2x+y))/(2-cosx-cosy) dxdy =4/π-1/2 一般に(0,0)--(i,j)間の抵抗値は (1/(2π)^2)∫[0,2π]∫[0,2π] (1-cos(ix+jy))/(2-cosx-cosy) dxdy =(1/(8π^2))∫[0,2π]∫[0,2π] (1-cos(i(x+y)+j(x-y)))/(1-cosxcosy) dxdy =(1/(8π^2))∫[0,2π]∫[0,2π] (1-cos((i+j)x)cos((i-j)y))/(1-cosxcosy) dxdy =(1/(2π))∫[0,π] (1-cos((i+j)x)((1-|sinx|)/cosx)^|i-j|)/|sinx| dx (0,0)--(i,i)間の抵抗値は (1/(2π))∫[0,π] (1-cos((i+j)x))/|sinx| dx =(2/π)(1+1/3+1/5+1/7+...+1/(|2i|-1))



211:132人目の素数さん
20/02/07 21:19:32.21 CyUpE86n.net
>>200
その解は
f(x,y)=Σe[kl]exp(ikx+ily)
が収束すると仮定して(仕事率の有限性から二乗は収束する)みたすべき関数方程式で見つけました。
見つかっちゃえば解答はコレが解だでいいハズなんですが、級数の収束性とかが自明でないのでコレのみが解なのか示せてなくて気持ち悪い。
まぁ入社試験ではそこまで求められないんだろけど。
>>201のエレガントな解答求むのやつは確か与式が等号でなくて不等号だったかな?
しかしそこから等号の有界な非自明解の存在が必要性で出てきて矛盾を導くという流れだったような。
検索しても出てこないなぁ?


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch