20/02/04 21:23:45 VleZ36bS.net
>>162
>> 入水する点の座標が
>> (2p/d,2q/d,0) 但し、d=√(p^2+q^2)
>> が最適とはどうして分かるのでしょうか?
なるほど、紛らわしい書き方をしてしまったようです。申し訳ありません。
(2p/d,2q/d,0) というのは、入水地点ではなく、速度ベクトルです。
原点から、この方向に、時刻0 から 時刻 t まで移動すると、
(2pt/d,2qt/d,0)
に到ります。この地点から、目的地をみると、(p-2pt/d,q-2qt/d,r)という方向にあります。
このまま、この速度を維持したまま、進んだ方がいいか、戦略をβからαに切り替えた方がよいか、
その判定に用いるのが、
「cosθ>1/v」
という式です。
この式が不成立になる時刻を求めるための、方程式が
((p-2pt/d,q-2qt/d,r),(2p/d,2q/d,0)) =(1/2)*|(p-2pt/d,q-2qt/d,r)|*|(2p/d,2q/d,0)|
です。(左辺は内積の式であり、右辺は、ベクトルの大きさの積とcos(π/3)で構成されています。)
ここで求まった時刻を、(2pt/d,2qt/d,0) に代入すると、入水地点がわかります。