20/03/07 04:53:05.26 bfEFgg5v.net
>>734
a > 1 = b の例なら多数ある。
3^3 + 13 - 1 = 3・13,
3^7 + 1093 - 1 = 3・1093,
3^9 + 757 - 1 = (3^3)・757,
3^13 + 797161 - 1 = (3^5)・797161,
5^3 + 31 -1 = 5・31,
5^7 + 19531 - 1 = 5・19531、
5^11 + 12207031 - 1 = 5・12207031,
5^13 + 305175781 - 1 = 5・305175781,
7^5 + 2801 - 1 = 7・2801,
7^13 + 16148168401 - 1 = 7・16148168401,
11^9 + 1772893 - 1 = 11・1772893,
13^5 + 30941 - 1 = 13・30941,
13^7 + 5229043 - 1 = 13・5229043,
17^5 + 88741 - 1 = 17・88741,
23^5 + 292561 - 1 = 23・292561,
29^5 + 732541 - 1 = 29・732541,
31^7 + 917087137 - 1 = 31・917087137.
781:132人目の素数さん
20/03/07 04:57:25.66 bfEFgg5v.net
訂正
3^13 + 797161 - 1 = 3・797161,
782:132人目の素数さん
20/03/07 05:02:51.64 RmEnux0b.net
>>727
おいキチガイ
お前の自演がバレたのは皆知ってるのに恥ずかしくないのか?
早く死ね
399:132人目の素数さん 2020/02/05(水) 21:13:33.13 ID:9/QT18GC
>>398
高校数学は解けるとかダッサ^^
いっそのこと、高校数学すら解けないほうがまだ数学の能力が未知数っぽくていいよ!
どういうことかわかる?
高校数学は出来てしまって、大学数学は応用だからできない
つまり底が見えちゃったってことだよお前www
だっせぇwwwwww
400:132人目の素数さん 2020/02/05(水) 21:40:42.63 ID:9/QT18GC
>>399
自己紹介乙~~~~~~~~~wwwwwwwwwwwww
783:132人目の素数さん
20/03/07 08:20:15 fK/tkEBi.net
>>757
と、妄想する孤独なオッサン
784:132人目の素数さん
20/03/07 17:00:11 UXzTqXZc.net
質問です
sinθやcosθの二乗はなぜ1次に直してから積分するんですか?
sinθやcosθは二乗のまま積分することは出来ないのですか?
785:132人目の素数さん
20/03/07 17:31:28 JUAM4CMV.net
>>759
できないことを証明して
786:132人目の素数さん
20/03/07 17:32:16 gU1DIJuM.net
>>760
は?なんだこいつ
787:734
20/03/07 17:32:34 PU5tCoaM.net
>>751 >>755
いくつも例をありがとうございます。
これらの例は機械的に(漸化式とかで)計算で得られるのでしょうか。
それとも試行錯誤で見つけていくのでしょうか。
788:132人目の素数さん
20/03/07 17:44:47 JUAM4CMV.net
>>761
は?できないんですね?
ならイイジャン
789:132人目の素数さん
20/03/07 18:08:10.30 BIfUSYLu.net
>>760
公式を習っていません
790:132人目の素数さん
20/03/07 19:17:30 7tKMhuYs.net
>>754
ありがとうございます
助かりました
791:132人目の素数さん
20/03/07 19:27:45 JUAM4CMV.net
>>764
公式??
それでいいなら
∫cos^2θdθ=(θ+sinθcosθ)/2
を覚えたらいい
そんなことより
∫cos^2θdθ+∫sin^2θdθ=θ
と
(sinθcosθ)'=cos^2θ-sin^2θ
からの部分積分法で考える方がもっといいが
792:132人目の素数さん
20/03/07 23:43:50 HCTzE85M.net
>>759
別スレでは二乗に直して積分する例があるぞ
793:132人目の素数さん
20/03/08 01:58:39 k1ts7FsR.net
使えねぇぽんこつばっかだなここ
794:132人目の素数さん
20/03/08 05:26:45 xYlNxYaj.net
>>762
a>1=b とすると
p^a + q -1 = p^c・q,
q = (p^a -1)/(p^c -1),
= Π[d|a, not(d|c)] Φ_d(p),
Φ_d は円分多項式。
qが素数だから [ ] 内の条件を満たすdは一つだけ。(d=a)
q = Φ_a(p),
a,c は素数ベキで a/c も素数。
(a,c) = (r,1) (r^2,r) (r^3,r^2) ・・・・
が必要条件になります。十分条件はどうなんでしょうね?
795:132人目の素数さん
20/03/08 05:37:26 xYlNxYaj.net
>>751
>>755-756 に追加
3^13 +q -1 = 3・q, q = 797161,
796: (←訂正) 3^71 +q -1 = 3・q, q = 3754 7332574898 6240197335 7979128773, 5^47 +q -1 = 5・q, q = 177 6356839400 2504646778 1066894531, 11^9 +q -1 = (11^3)q, q = 1772893, (←訂正) 11^17 +q -1 = 11・q, q = 5054470 2849929377, 11^19 +q -1 = 11・q, q = 611590904 4841454629, 17^7 +q -1 = 7・q, q = 25646167, 17^11 +q -1 = 11・q, q = 214 1993519227, 19^31 +q -1 = 19・q, q = 243270318 8914838381 0359338159 5151809701, 31^17 +q -1 = 31・q, q = 7516 7055913875 8105956097, 31^31 +q -1 = 31・q, q = 56897 2471024107 8652870214 3430197715 8534824481, 37^13 +q -1 = 37・q, q = 676581178 3780036261,
797:132人目の素数さん
20/03/08 05:44:31 xYlNxYaj.net
訂正
17^7 +q -1 = 17・q, q = 25646167,
17^11 +q -1 = 17・q, q = 214 1993519227,
798:132人目の素数さん
20/03/08 06:14:29.78 xYlNxYaj.net
>>766
(sinθcosθ) ' = (cosθ)^2 - (sinθ)^2,
は
{ (1/2)sin(2θ) } ' = cos(2θ),
と同じことでつよ
∫(cosθ)^2 dθ = ∫(cosθ)^4 dθ/(cosθ)^2
= ∫ 1/(1+tt)^2 dt (t=tanθ)
= (1/2)∫ {1/(1+tt) + (1-tt)/(1+tt)^2} dt
= (1/2){arctan(t) + t/(1+tt)}
= (1/2)(θ + sinθcosθ),
∫(sinθ)^2 dθ = ∫(sinθcosθ)^2 dθ/(cosθ)^2
= ∫ (t/(1+tt))^2 dt (t=tanθ)
= (1/2)∫ {1/(1+tt) - (1-tt)/(1+tt)^2} dt
= (1/2){arctan(t) - t/(1+tt)}
= (1/2)(θ - sinθcosθ),
ぢゃね?
799:132人目の素数さん
20/03/08 06:32:32 TuhHjX9Z.net
数学検定って大人で受ける人ほとんどいないですよね?
800:132人目の素数さん
20/03/08 08:49:58.82 pPjn9YkF.net
>>773
クソハゲデブオヤジの自分が受けに行ったら浮いてしまって
周りからドン引きされることを心配してるの?
801:132人目の素数さん
20/03/08 09:56:47.37 TuhHjX9Z.net
いやいや、youtubeで見たら教科書レベルの問題ばかりなのに合格率がやけに低かったので
802:132人目の素数さん
20/03/08 11:55:45 glDw13Zp.net
>>772
倍角半角なしで
おすすめは
∫cos^2θdθ
=∫(sinθ)'cosθdθ
=sinθcosθ+∫sin^2θdθ
=sinθcosθ+θ-∫cos^2θdθ
同様にあるいは
∫sin^2θdθ
=∫cos^2(θ-π/2)dθ
=sin(θ-π/2)cos(θ-π/2)+(θ-π/2)-∫cos^2(θ-π/2)d(θ-π/2)
=θ-cosθsinθ-∫sin^2θdθ
803:132人目の素数さん
20/03/08 11:57:05 glDw13Zp.net
>>773
大学入試とか単位認定とかに使われないからじゃ?
804:132人目の素数さん
20/03/08 12:36:02.95 +uc2snkG.net
>>777
会話能力低いですね
805:132人目の素数さん
20/03/08 12:39:34.42 glDw13Zp.net
>>778
なんで?
806:132人目の素数さん
20/03/08 12:40:35.32 glDw13Zp.net
あと履歴書に書く資格としても認知度は皆無
807:132人目の素数さん
20/03/08 12:54:54.67 P4A8RKCM.net
>>778
ブーメランだな
808:132人目の素数さん
20/03/08 13:12:24.88 TuhHjX9Z.net
たぶん中高生が予習して受けるのが大半の物なのかなっていう推測でした
>>777>>780
大学行ってしまえばほとんど無価値って感じですかね?
809:132人目の素数さん
20/03/08 13:20:19.60 glDw13Zp.net
>>782
持っていて自己満足にしかならないわけで
それなら持って無くても数学は自己満足が容易だし
810:132人目の素数さん
20/03/08 13:57:42 TuhHjX9Z.net
>>783
ありがとうございます
811:772
20/03/09 04:58:30.51 V6IMEB5h.net
>>776
けっきょく
∫(cosθ)^2 dθ = ∫(sinθ)’ cosθdθ = sinθcosθ + ∫(sinθ)^2 dθ,
と
∫(cosθ)^2 dθ + ∫(sinθ)^2 dθ = ∫dθ = θ,
ですか・・・・
812:132人目の素数さん
20/03/09 08:08:09.24 kaHbC0fO.net
>>785
>>766
813:132人目の素数さん
20/03/09 10:10:11.63 LKrGv3sa.net
自演をした事すら分からなくなった認知症のキチガイ爺w
コロナで死ね
キチガイ爺の自演失敗
↓↓↓↓↓↓↓↓
399:132人目の素数さん 2020/02/05(水) 21:13:33.13 ID:9/QT18GC
>>398
高校数学は解けるとかダッサ^^
いっそのこと、高校数学すら解けないほうがまだ数学の能力が未知数っぽくていいよ!
どういうことかわかる?
高校数学は出来てしまって、大学数学は応用だからできない
つまり底が見えちゃったってことだよお前www
だっせぇwwwwww
400:132人目の素数さん 2020/02/05(水) 21:40:42.63 ID:9/QT18GC
>>399
自己紹介乙~~~~~~~~~wwwwwwwwwwwww
814:132人目の素数さん
20/03/09 19:09:21 UJE8m+sx.net
と、池沼おじさん
815:132人目の素数さん
20/03/09 19:20:42 VBs7q0Zl.net
と、キチガイ爺さん
816:132人目の素数さん
20/03/09 19:21:40 pDHpWwB3.net
912 132人目の素数さん sage 2020/01/08(水) 07:17:03.75 ID:Cax1/W+U
挟み撃ちは不等式じゃなくて極限に使うんだよ
しかも定理じゃなくて原理
934 132人目の素数さん sage 2020/01/08(水) 16:19:21.47 ID:Cax1/W+U
あのね、高校数学においては教科書が正義なんだよ
どこの馬の骨とも分からないおまいらじゃなくて偉い数学者が監修してる訳だよ
その教科書が原理と書いてるから原理なんだよ
それに文句があるんなら偉い数学者になって監修側にまわれば?
938 132人目の素数さん sage 2020/01/08(水) 21:55:51.79 ID:Cax1/W+U
>>936
そう「質問」スレだよ
何がその前に数学板だよwww
的外れで馬の骨のお前の意見なんてどうでもいいよ
817:132人目の素数さん
20/03/09 19:57:40.36 2zAoH9ye.net
1/4で当たりが入っていて1回100円のくじを連続で引く場合、平均投資額はいくらになりますか?
計算式もあわせて教えてください
818:132人目の素数さん
20/03/09 21:00:19.74 CgOA+kY/.net
±√(x+y) = -2x -1という式があって
「両辺を2乗して整理する」とあるのですが、なんで両辺がプラスでもないのに勝手に2乗していいのでしょうか?
xとyの範囲は決まってません
819:132人目の素数さん
20/03/09 21:25:49 kaHbC0fO.net
a=±b ⇔ a=b or a=-b ⇔ a-b=0 or a+b=0 ⇔ (a-b)(a+b)=0 ⇔ a^2=b^2
820:132人目の素数さん
20/03/09 22:35:57.45 CgOA+kY/.net
んん?
821:132人目の素数さん
20/03/09 22:57:26.30 V6IMEB5h.net
つまり
±√(x+y) = -(2x+1),
√(x+y) = -(2x+1) or -√(x+y) = -(2x+1),
√(x+y) + (2x+1) = 0 or -√(x+y) + (2x+1) = 0,
{√(x+y) + (2x+1)}×{-√(x+y) + (2x+1)} = 0,
-(x+y) + (2x+1)^2 = 0,
(x+y) = (2x+1)^2,
822:132人目の素数さん
20/03/09 23:05:52.63 EQAaqLrd.net
URLリンク(d.kuku.lu)
823:132人目の素数さん
20/03/10 07:05:53.38 Ct1vj+NA.net
>>795
下3 → 下4 を云うには、実数体Rが整域である(零因子が無い)ことが必要でつね。
824:132人目の素数さん
20/03/10 07:22:19.65 mBl6e57d.net
3行目から4行目じゃなくてその逆だし、だからなに?としか思えないんだが
825:132人目の素数さん
20/03/10 07:26:10.81 mBl6e57d.net
下からだったすまん、下からなら3→4でいいのか
まあでも中学生の質問に対して整域云々言うのは知識自慢したいようにしか見えない(全く自慢にならないけど)
826:132人目の素数さん
20/03/10 07:35:04.34 Ct1vj+NA.net
>>796
Theme-1 【連続変数を主役とした全称命題の証明】
━━━━━━━【例題】━━━━━━━━━
a≧b≧0 とする。自然数nに対して、次の不等式を証明せよ。
a^n - b^n ≦ (n/2)(a-b){a^(n-1) + b^(n-1)}.
〔1982年 名古屋大学・理系〕
━━━━━━━━━━━━━━━━━
前書きで「東大・京大・阪大の入試問題を中心に」と書いたにも関わらず
最初の例題が名古屋大学であるのはご容赦を(笑)。「一発目は手頃な問題を」
と思い名古屋の問題に登場してもらいました。
さて、冒頭に書いたことをきちんと理解しておけば "全称命題" に関して
は基本的に困ることはないはずです。ただし、残念ながらこれだけではまだ
不十分と言わざるを得ません。というのもいつもいつも与えられた問題文が
「あぁ、全称命題だなぁ」と気が付きやすいものであるとは限らないため、
それを見抜く力も養わなければならないからです。
827:132人目の素数さん
20/03/10 09:00:38 Ct1vj+NA.net
・解1
a=b のときは明らか
a>b のとき
〔補題〕
a≠b>0, k,L
828:≧0 のとき a^k・b^L + a^L・b^k < a^(k+L) + b^(k+L), (略証) a^(k+L) + b^(k+L) - a^k・b^L - a^L・b^k = (a^k - b^k)(a^L - b^L) > 0, (終) 本題: (a^n-b^n)/(a-b) = Σ[k=0,n-1] a^k・b^(n-1-k) = (1/2)Σ[k=0,n-1] {a^k・b^(n-1-k) + a^(n-1-k)・b^k} < (1/2)Σ[k=0,n-1] {a^(n-1)+b^(n-1)} = (n/2){a^(n-1)+b^(n-1)}, ・解2 n=1 のときは明らか。 n>1 のとき y = x^(n-1) は下に凸だから (a,a^(n-1)) と (b,b^(n-1)) を結ぶ直線より下側にある。 a^n - b^n = ∫[b,a] n・x^(n-1) dx < (n/2)(b-a){a^(n-1)+b^(n-1)} ← 台形公式 ・解3 √(ab) = c, a = c・exp(t), b = c・exp(-t) とおく。 a-b = 2c sinh(t), a^n - b^n = 2(c^n)sinh(nt), a^(n+1) + b^(n-1) = 2c^(n-1) cosh((n-1)t), 和積公式より (n/2)(a-b){a^(n-1)+b^(n-1)} = 2n(c^n)sinh(t)cosh((n-1)t) = n(c^n){sinh(nt) - sinh((n-2)t)} = 2(c^n)sinh(nt) + (c^n){(n-2)sinh(nt) - n・sinh((n-2)t)} ≧ 2(c^n)sinh(nt) = a^n - b^n.
829:132人目の素数さん
20/03/10 10:54:03.70 566o0tSm.net
>>795
すごいわかりやすかった
ありがとうー
830:132人目の素数さん
20/03/10 12:44:49.34 Ct1vj+NA.net
>>801
解3では sinh(x)/x が x>0 で単調増加することを使った。
(略証)
sinh(x+h)/sinh(x) = cosh(h) + coth(x)sinh(h) > 1 + coth(x)h,
ところで
cosh(x) = (1/x)cosh(x)∫[0,x] dt > (1/x)∫[0,x] cosh(t)dt sinh(x)/x,
だから
sinh(x+h)/sinh(x) > 1 + (1/x)h = (x+h)/x,
831:132人目の素数さん
20/03/10 14:27:29 Ct1vj+NA.net
>>769
c|a のとき
q = Π[d|a, not(d|c)] Φ_d(x)
= (x^a-1)/(x^c-1)
= {(x^c)^(a/c) -1}/(x^c -1)
= Π[1<r|(a/c)] Φ_r(x^c),
832:132人目の素数さん
20/03/10 14:52:33.74 Yztp0G0I.net
>>796
2(a^n++a^ib^n-1++a^n-ib^i++b^n)
=(a^n+b^n)++(a^ib^n-i+a^n-ib^i)++(a^n-ib^i+a^ib^n-i)++(b^n+a^n)
=(a^n+b^n)++(a^n+b^n)-(a^i-b^i)(a^n-i-b^n-i)++++(a^n+b^n)
≦(n+1)(a^n+b^n)
833:132人目の素数さん
20/03/10 15:26:54.33 prBXmlpI.net
xとyをpで割った余りが等しければ
x-1とy-1をpで割った余りも等しいですか
834:132人目の素数さん
20/03/10 15:50:08 HiFSocP8.net
そやね
835:132人目の素数さん
20/03/10 17:11:54 vC568XMn.net
そだねー
836:132人目の素数さん
20/03/11 00:04:33 z+ZNEzrh.net
>>796模範解答
URLリンク(d.kuku.lu)
837:132人目の素数さん
20/03/11 12:25:47 zi4olkqu.net
>>805 は nについての帰納法(?)
n=1 のときは明らか。
a^(n+1) - b^(n+1)
= (1/2)(a-b)(a^n + b^n) + (a+b)/2・(a^n - b^n)
< (1/2)(a-b)(a^n + b^n) + (a+b)/2・{(n/2)(a-b)[a^(n-1) + b^(n-1)]}
< (1/2)(a-b)(a^n + b^n) + (n/2)(a-b)(a^n + b^n)
= {(n+1)/2}(a-b)(a^n + b^n).
*) 2(a^n+b^n) - (a+b){a^(n-1)+b^(n-1)} = (a-b){a^(n-1)-b^(n-1)} > 0,
838:132人目の素数さん
20/03/11 13:25:07 avK6eeO9.net
>>810
直説法
839:132人目の素数さん
20/03/11 21:32:32.86 zTxv1KOQ.net
佐藤優著 晶文社
「16歳のデモクラシー——受験勉強で身につけるリベラルアーツ」
p.41「小テスト1」の問題2
「整数に関して、任意の偶数と任意の奇数を足すと必ず奇数になることを証明せよ」
p.49解答例
「m,nを任意の整数とすると、偶数は2m、奇数は2n+1で表せる。これを足すと2m+2n+1、すなわち2(m+n)+1となる。2(m+n)は必ず偶数になるので、2(m+n)+1は奇数。すなわち任意の偶数と任意の奇数を足すと必ず奇数になる。」
とありました。しかし問題文にある「任意の偶数」と「任意の奇数」はそれぞれ2mと2n+1のことです。
任意の偶数」と「任意の奇数」をそれぞれA、Bとすると
A=2m B=2n+1 となる整数m,nが一意的に存在するということではないでしょうか?
840:132人目の素数さん
20/03/11 21:48:46.67 cB+Fbe+d.net
そうですね
でも別にその本の書き
841:方でも間違ってないですよね 何が気に入らないんですか?
842:132人目の素数さん
20/03/11 22:15:21.01 0NLxv0gF.net
異なる奇素数 p,q,・・・,s をとって
「pで割ると余りが aまたはbになる整数の集合」
「qで割ると余りが cまたはdになる整数の集合」
・・・
「sで割ると余りが hまたはiになる整数の集合」
を考えるです。
うまくp,q,・・・,s そして a,b,c,d,・・・,h,iを選ぶ(a~iの方は異なってなくていいです)と
これらの集合で整数全体を覆うことはできますか。
843:132人目の素数さん
20/03/11 23:17:54.06 l39iL30e.net
a+b と ab が整数のとき
aとbはどちらも整数ですか?
証明方法も含めて教えてください
844:132人目の素数さん
20/03/11 23:29:06.06 2H8OCu63.net
整数ではない
方程式t^2-(a+b)t+ab=0
の解t=α,βが題意を満たすが、aとbに適当な数値を放り込むと非整数どころか虚数値さえ取り得る
845:132人目の素数さん
20/03/11 23:45:24.88 l39iL30e.net
>>816
ありがとうございます
846:132人目の素数さん
20/03/12 00:09:25.89 V/f7Uy6p.net
>>811
(a^n+b^n)-(a^ib^n-i+a^n-ib^i)=(a^i-b^i)(a^n-i-b^n-i)≧0
(a^n+b^n)≧(a^ib^n-i+a^n-ib^i)
(a^n+b^n)++(a^ib^n-i+a^n-ib^i)++(a^n-ib^i+a^ib^n-i)++(b^n+a^n)≦(n+1)(a^n+b^n)
がコンセプト
847:132人目の素数さん
20/03/12 10:12:28 mKJwV7nJ.net
>>811 >>818
>>801 の・解1と同様ですね。 (k→i としたもの)
848:132人目の素数さん
20/03/12 10:20:17 mKJwV7nJ.net
>>812
p.49 の例
m,nを任意の整数とする。たとえば、m=4, n=7 とすると仮定を満足する。
しかし 偶数10は2mでは表わせないし、奇数25は2n+1では表わせない。
よって p.49は誤り。
「任意の偶数」A と「任意の奇数」B をそれぞれ1つ決めれば、それに対して
A=2m, B=2n+1 となる整数 m, n が少なくとも1つは存在する。
ということです。
昔の安物の物理書などでよく見たトリックだ。
>>813
「間違ってない」と思う根拠が知りたい・・・・
849:132人目の素数さん
20/03/12 10:41:43 ju7leFqA.net
「m,nを任意の整数とする」ってのは「m、nは全ての整数を取り得る」って意味なんでないの?
「任意の偶数はmを整数として2mと表せる」とかとするべきってこと?
850:132人目の素数さん
20/03/12 11:18:24 V/f7Uy6p.net
>>820
>しかし 偶数10は2mでは表わせないし、奇数25は2n+1では表わせない。
??
851:132人目の素数さん
20/03/12 11:19:13 V/f7Uy6p.net
>>821
ああ分かった>>820のネタはそれか
852:132人目の素数さん
20/03/12 11:49:36 3Ad/EX8L.net
すべての整数から特定の元を選ぶことはできない
∀a,b∈Z, a=1,b=2
こんなのはすうがくではない
853:132人目の素数さん
20/03/12 12:34:36 Wbv9OAhT.net
>>788
コイツはいつもスレを監視してるんだなw
ヒマがあるならハローワーク行けよキチガイ爺
コロナ不況で就職は無理かw
自演のクズは死ぬしかないな
854:132人目の素数さん
20/03/12 16:47:46 mKJwV7nJ.net
1か所に変な記述があると、「他にも有るかも知れぬ」と
歌川広重、ぢゃなくて歌川国芳。
たった1か所でも疎かにはできない。
855:132人目の素数さん
20/03/12 17:29:44 MNH7xz+y.net
>>814
明らかに無理に決まっとろうが。できる言うやつがおったらワシがぶち殺しちゃるけえ。
互いに素をなめたらいかん
856:132人目の素数さん
20/03/12 20:05:11.95 ocs6r8t6.net
>>825
と、スレの監視が生きがいのオジサン
857:132人目の素数さん
20/03/13 13:27:16.26 l20VjRfO.net
>>814
素数 p,q,・・・・,s に対して積を N = pq・・・s とおく。
〔中国剰余定理〕
pで割ると余りがa、qで割ると余りがc、・・・・、sでr割ると余りがh になるものは
{1,2,・・・・,N} の中に1つしかない。
(略証)
もし xとyがこれを満たすならば、その差 x-y は p,q,・・・・,s のすべてで割り切れ、Nで割り切れる。
ところで 1 ≦ x,y≦ N だから、 |x-y|≦ N-1,
∴ x-y=0,
∴ x=y,
さて、本題では 各素数について2とおり有る。
全部で 2^e とおり有るが、それでも N=pq・・・・s よりずっと小さい。
∴ {1,2,・・・・,N} を覆うことはできない。
858:132人目の素数さん
20/03/13 13:35:24.14 l20VjRfO.net
>>826
歌川国貞もいた。。。
859:132人目の素数さん
20/03/13 15:38:03.49 ZslM49a9.net
x=(t^2)/(t^2-t+1), y=(t^2-2t+1)/(t^2-t+1)
で表される曲線はだ円を表しますか?
860:132人目の素数さん
20/03/13 15:46:38 eu0owVym.net
はい
861:132人目の素数さん
20/03/13 15:54:37.25 ZslM49a9.net
なんでそんな一瞬で分かっちゃううんですか?
式をどう見ると分かるんでそうか?
862:132人目の素数さん
20/03/13 16:27:28 eu0owVym.net
分母共通の二次式で分子も二次式なら二次曲線確定。
分母の判別式マイナスなら楕円。
863:132人目の素数さん
20/03/13 16:31:04 awJHzA/I.net
y - 1 = -t/(t^2 - t + 1)
t = 0 のとき (x, y)=(0, 1)
t ≠ 0 のとき x/(y - 1) = -t, y ≠ 1
(y - 1)(x^2/(y - 1)^2 + x/(y - 1) + 1) = x/(y - 1)
x^2 + x(y - 1) + (y - 1)^2 = x
x^2 + xy + y^2 - 2x - 2y + 1 = 0 ……(*)
判別式 = 1^2 - 4*1*1 < 0
楕円 (*) から (1, 1) を除いたものだな
864:132人目の素数さん
20/03/13 16:32:34 awJHzA/I.net
>>834
なるほど、x, y ともに発散しないからですね
865:132人目の素数さん
20/03/13 17:34:44 l20VjRfO.net
3(x+y)/2 - 2 = 1 - (3/2)/(tt-t+1),
x-y = (2t-1)/(tt-t+1),
より
3(xx +xy +yy -2x -2y +1) +1
= 3{(x-2/3)^2 + (x-2/3)(y-2/3) + (y-2/3)^2}
= {3(x+y)/2 -2}^2 + (3/4)(x-y)^2
= 1,
長半径 a=√(2/3), 短半径 b=(√2)/3, 面積 πab = 2π/(3√3).
866:132人目の素数さん
20/03/13 18:51:42 l20VjRfO.net
t = {1 + (√3)tanφ}/2 = cos(φ - π/3)/cosφ,
とおくと
(2t-1)/√3 = tanφ,
3(x+y)/2 - 2 = cos(2φ),
(√3)(x-y)/2 = sin(2φ),
867:132人目の素数さん
20/03/14 23:25:11.95 S+bh5ttW.net
∫_[0,1] (x^2)*(x^2-1)^8 dx
の求め方を教えてください。
868:132人目の素数さん
20/03/14 23:55:20.62 02jx/cQr.net
無理≒
869:132人目の素数さん
20/03/15 00:15:22.66 Eo7f51FR.net
x=sintと置くと、dx/dt=cost、
(x^2)*(x^2-1)^8dx/dt=(sint)^2(cost)^(16+1)=(cost)^17-(cost)^19
与式=∫[0,π/2]{(cost)^17-(cost)^19}dt
C(n)=∫[0,π/2](cost)^ndt=∫[0,π/2]cost(cost)^(n-1)dt
=0-∫[0,π/2]sint*(n-1)(cost)^(n-2)(-sint)dt
=(n-1)∫[0,π/2](1-(cost)^2)(cost)^(n-2)dt=(n-1)(C(n-2)-C(n))
C(n)=(n-1)/nC(n-2)
C(19)=18/19*C(17)=18/19*16/17*C(15)=18/19*16/17*14/15*・・・*2/3*C(1)=18!!/19!!
与式=C(17)-C(19)=16!!/17!!-18!!/19!!=(16!!/19!!)(19-18)=16!!/19!!
870:132人目の素数さん
20/03/15 00:39:09 Eo7f51FR.net
x^2(x^2-1)^8=x^2(x^16-8x^14+28x^12-56x^10+70x^8-56x^6+28x^4-8x^2+1)
=x^18-8x^16+28x^14-56x^12+70x^10-56x^8+28x^6-8x^4+x^2
与式=1/19-8/17+28/15-56/13+70/11-56/9+28/7-8/5+1/3
871:132人目の素数さん
20/03/15 12:10:16 8d8gCNj7.net
>>839
I_m = ∫[0,1] (xx)(1-xx)^m dx
とおく。部分積分で
I_{m-1} - I_m = ∫[0,1] x^4・(1-xx)^{m-1} dx
= (3/2m)∫[0,1] xx・(1-xx)^m dx
= (3/2m) I_m,
I_m = {2m/(2m+3)}I_{m-1}
= ・・・・
= {(2m)(2m-2)・・・・2/(2m+3)(2m+1)・・・・5}I_0
= (2m)!! / (2m+3)!! (← I_0 = 1/3)
あるいは xx=t とおいて
I_m = (1/2)B(3/2,m+1)
= (1/2)Γ(3/2)Γ(m+1)/Γ(m+5/2)
= m!(2^m) / (2m+3)!!
= (2m)!! / (2m+3)!!
m=8 のとき
16!! / 19!! = (2^15)/2078505 = 0.015765177375
872:132人目の素数さん
20/03/15 12:58:40 dpHNLjKC.net
∫_[0,1] (x^3)*(x^2-1)^8 dx なら簡単なのに
∫_[0,1] (x^2)*(x^2-1)^8 dx はちょっと変わるだけで激しく難化するのはなぜなんだ
873:132人目の素数さん
20/03/15 13:11:24 EElwyE67.net
(x^3)*(x^2-1)^8 = x { (x^2-1)^9 + (x^2-1)^8 }
= d/dx { 1/20 (x^2-1)^10 + 1/16 (x^2-1)^8 }
874:132人目の素数さん
20/03/15 13:54:48 8d8gCNj7.net
f(x) = xx(1-xx)^m は x = 1/√(m+1) = μ で最大となる。
f(μ) = (m^m)/{(m+1)^(m+1)},
f(x) を正規分布N(μ, σ^2) で近似する。
f(x) = f(μ) {1 - (x-μ)^2 /(2σ^2) + ・・・・}
≒ f(μ) exp{ - (x-μ)^2 /(2σ^2)},
ここに σ = (√m)/(2(m+1)),
∫[0,1] f(x)dx ≒ f(μ) ∫[μ-2σ, μ+2(√m -1)σ] exp{- (x-μ)^2 /(2σ^2)} dx
≒ f(μ) ∫[μ-2σ, ∞] exp{- (x-μ)^2 /(2σ^2)} dx
= 0.97725 √(2π)・f(μ) σ
= 0.97725 √(π/2)・m^(m+1/2) / (m+1)^(m+2),
m=8 のとき 0.0166688 だいぶ大きい....orz
875:132人目の素数さん
20/03/16 22:55:16 /zRvnv5a.net
すみません高校生じゃなくて30代なんですけど、
sin cos tanって結局何がしたいんですかね?
直角三角形において
sin=高さ/斜辺
cos=底辺/斜辺
tan=高さ/底辺
ここまでは検索すれば出てくるので覚えたのですが、そもそもこの値はなんなの。
876:132人目の素数さん
20/03/16 23:26:56.77 LM2AFJKw.net
応用は本当にたくさんあるけど、一番単純には測量なんかで三角関数表が役に立つよ
真髄は解析だけど
877:132人目の素数さん
20/03/17 00:23:25.82 vHem04JL.net
工事の人が三脚みたいなやつおいて覗いて測量するあれですね
元々は天体の運動を記述するのに発達した分野だったかと思います
空の星の位置を知ろうと思ったら、望遠鏡で覗いた時の角度でどうにかして位置を特定するしかなかったわけです
てか、今も基本は同じですけど
878:132人目の素数さん
20/03/17 06:15:43.92 VwMzbBTv.net
>>848-849
ご親切にありがとうございます
みなさんのレスで今日急に長年の疑問が解消されそう
最初に答えがわかってるから有名な直角二等辺三角形で試してみると
sinθの場合"1/√2"をdegにしてグーグルの関数電卓に入力すると0.70710678118と出てくる
この数字を三角関数表と照らすと角度が45度とわかるということ
はえー今まで生きてきてマジでわからなかった
感謝しかない
879:132人目の素数さん
20/03/17 15:44:36 LRWp8hDU.net
△OABと点A'が与えられたときに△OAB∽△OA'B'となるような点B'を
定規とコンパスで作図する方法はどうすればいいのでしょうか?
880:132人目の素数さん
20/03/17 16:33:30 yOLN43Ea.net
>>851
例えば、直線OA'上にOA''=OAとなる点A''をとり、△OAB≡△OA''B''を作る
点A'を通りA''B''と平行な直線を引いて直線OB''との交点をB'とすれば△OA'B'は△OABと相似になるんでないか?
881:132人目の素数さん
20/03/19 23:44:36 8QNcFC1P.net
数aの問題です。
【300人を対象に「二つのテーマパークpとqに行ったことがあるか」というアンケートをおこなったところ、pに行ったことがある人が147人、qに行ったことがある人が86人、どちらにも行ったことのない人が131人であった。
(1)両方に行ったことのある人の数を求めよ。
(2)どちらか一方にだけ行ったことのある人の数を求めよ。】 という問題です。答えを見てもなかなか理解が出来ませんでした。
882:132人目の素数さん
20/03/19 23:46:49 3QfhM5ki.net
pだけい
883:った、qだけ行った、どっちも行った、どっちも行ってない の4つのどれかに必ず分類される と考えたらすぐ分かるんじゃない?
884:132人目の素数さん
20/03/20 08:58:53 9Yw4MKtq.net
実数x,y,zに対し
x^3+y^3+z^3-3xyz ≧ 2{ (x+y)/2-z }^3
が成り立つことを示すにはどうしましょう。
展開sるとぐちゃぐちゃでとても整理できないです僕には
885:132人目の素数さん
20/03/20 15:55:18 KHM7pf/6.net
仮定を待ち変えてるだろ
奇数冪とかおかしい
886:132人目の素数さん
20/03/20 16:47:54 qfUVugUD.net
x=-1, y=z=0 のとき
左辺は-1
右辺は-1/4
887:855
20/03/20 17:05:32 9Yw4MKtq.net
正の実数x,y,zに対し
x^3+y^3+z^3-3xyz ≧ 2{ (x+y)/2-z }^3
でした。すみみせん。
888:132人目の素数さん
20/03/20 17:36:53 BtUHHf21.net
>>857
頭悪いなーこいつ
889:132人目の素数さん
20/03/20 17:59:44.14 hRA9R6Ti.net
と、証明できない池沼が
890:132人目の素数さん
20/03/20 18:05:47.64 BtUHHf21.net
>>860
必要条件と十分条件から学び直しましょうね~
891:132人目の素数さん
20/03/20 18:11:33 KAa0/ayd.net
>>861
馬鹿丸出しwwwwwwwwwwwwwwww
892:132人目の素数さん
20/03/20 18:25:14 nzdkAexE.net
>>857が「反例」になってることが理解できない馬鹿ガイジがドヤ顔で
必要条件十分条件を指摘してるスレはここですか?
893:132人目の素数さん
20/03/20 18:35:27 6gBnYuA1.net
ID:BtUHHf21
すげぇ大物が現れたな
894:132人目の素数さん
20/03/20 19:12:41.55 U4pTGkWu.net
もしかして>>857が>>855の反例ではなく成り立つことの証明だと勘違いしたとか……?
そんで「具体例ひとつ挙げただけで証明になるわけねーだろwwww」と言いたかったのかな?
895:132人目の素数さん
20/03/20 19:28:09.45 uYgZMgQf.net
あんまりいじめてやるなよwww
896:132人目の素数さん
20/03/20 20:48:00 9Yw4MKtq.net
そんなこと言い愛してるのつまらないですよ。
それより
正の実数x,y,zに対し
x^3+y^3+z^3-3xyz ≧ 2{ (x+y)/2-z }^3
の証明の仕方をお願いです。
897:132人目の素数さん
20/03/20 22:17:32 hZl/ysP3.net
x=(p+q)/2、y=(p-q)/2、z=tp/2 と置き換えると
左辺-右辺=(3/8)(p^3(t-1)^2+pq^2(t+2))≧0
898:132人目の素数さん
20/03/20 22:46:37 hZl/ysP3.net
ミス
×:左辺-右辺=(3/8)(p^3(t-1)^2+pq^2(t+2))≧0
○:左辺-右辺=(3/8)(p^3 t(t-1)^2+pq^2(t+2))≧0
元に戻すと
左辺-右辺=(3/4)(z(2z-x-y)^2 +(x-y)^2(x+y+z))≧0
899:132人目の素数さん
20/03/20 23:55:16.75 yacCV/qS.net
>>854 そう考えましたがなかなかできません。
図(長方形内に円を複数個描いて部分集合などを表すもの)で考えても全くわかりませんでした…。
青チャートの問題なのですが、やっぱ白チャートからの方がいいでしょうか?(今、中三で四月から高校生なので予習として勉強しています。青チャート以外に学校の教科書ガイドを使って予習しています。)
900:イナ ◆/7jUdUKiSM
20/03/21 01:14:56 gmytXLCF.net
前>>592
>>853
ベン図を描いて、
(1)PとQのダブリがある人数は、
147+86=233(人)
PとQのダブリがない人数は300-131=169(人)
∴PとQの両方に行った人数は、
233-169=64(人)
(2)Pのみ行った人数は、
147-64=83(人)
Qのみ行った人数は、
86-64=22(人)
∴PとQのどちらか一方のみ行った人数は、
83+22=105(人)
901:132人目の素数さん
20/03/21 07:56:19 mGy8Pwyx.net
それわからないなら先取りなんてしている場合じゃないよ
pに行ったことがある人=両方に行ったことがある人+pだけに行ったことがある人
qに行ったことがある人=両方に行ったことがある人+qだけに行ったことがある人
300人=pだけに行ったことがある人+qだけに行ったことがある人+両方行ったことがある人+どちらにも行ったことがない人
などを考えればわかるはずだが
902:132人目の素数さん
20/03/21 07:57:34 ofdhZ0B3.net
>>870
その程度の分類なら
田の字
903:みたいな表のほうが わかりやすいよ
904:132人目の素数さん
20/03/21 08:21:05 Zcm6g5oy.net
ベン図という言葉は習わないのかな
それにしても特に習っていなくても中学受験する小学生にも解けるくらいの問題だと思うのだが
小中の算数、数学を復習した方がいいと思う
905:132人目の素数さん
20/03/21 08:22:52 4n13SweC.net
ですよね…。小学四年生くらいからやりなおします…
906:132人目の素数さん
20/03/21 09:01:18 16xJBQCR.net
ヴェン図だけど
3つまでなら対称な図だけど
4つ5つで対称な図の書き方ってあるかな?
907:132人目の素数さん
20/03/21 09:03:28 16xJBQCR.net
>>873
田の字に十字は図として対称だけど4つの位置関係で対称じゃ無いのでイマイチ
908:132人目の素数さん
20/03/21 09:15:07 aYXXFT8J.net
>>876
4つなら空間の球4個で、5つなら4次元空間の3次元球で表すことができる。6、7、…個でも同様に
909:132人目の素数さん
20/03/21 10:39:54 rfSA/57n.net
>>877
田の字は2種類の分類限定
2種類ならVenn図よりも田の字のほうが
初心者にもわかりやすい
4種類で対称な図形は
3次元空間ないの4つの球
910:132人目の素数さん
20/03/21 10:58:29 x7stUs74.net
必要条件と十分条件から学び直しましょうね~
必要条件と十分条件から学び直しましょうね~
必要条件と十分条件から学び直しましょうね~
必要条件と十分条件から学び直しましょうね~
必要条件と十分条件から学び直しましょうね~
必要条件と十分条件から学び直しましょうね~
必要条件と十分条件から学び直しましょうね~
必要条件と十分条件から学び直しましょうね~
911:132人目の素数さん
20/03/21 11:53:45 16xJBQCR.net
>>878
すまん
平面でお願いします
912:132人目の素数さん
20/03/21 11:57:50 aYXXFT8J.net
じゃ、飛び地でも作るんだな
913:132人目の素数さん
20/03/21 15:09:24.35 16xJBQCR.net
ぎやふん
914:132人目の素数さん
20/03/21 16:21:18 v0FquT+H.net
すいません 16の解答が48になってるんですが間違ってないですか?
URLリンク(i.imgur.com)
915:132人目の素数さん
20/03/21 16:57:15 5n1X2PTv.net
もっと多い?
916:132人目の素数さん
20/03/21 17:03:58 hCC4s83x.net
(15-1)+2*(10-1)+3*(6-1)+4*(3-1)
=14+18+15+8=55 じゃないか?
917:132人目の素数さん
20/03/21 17:05:49 v0FquT+H.net
解答こんなんですが理解できますか?
URLリンク(i.imgur.com)
918:132人目の素数さん
20/03/21 17:10:02 5n1X2PTv.net
>>887
問題のほうの図が間違っているとしか思えないな
しかしそうだとしても面積1の個数のほうが面積2の個数より少ないなんてことあるんかな?
わけがわからないね
919:132人目の素数さん
20/03/21 17:12:50 v0FquT+H.net
>>888 やっぱり誤植ですよね?出版社HPにも誤植掲載ないので自分が間違ってるかと悩んでました ありがとうございます
920:イナ
20/03/21 17:18:01.15 gmytXLCF.net
\\\\\\\\\\\
\\\\\\\\\\\
\\\\\\\\\\\
\\\\\\\\\\\
\\\`∩∩、/、\\\\
\\⊂(_ _ )`⌒つ、\\
\\\\\`υ、\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\`>>884かぞえたら47個だった。前>>871だから4だね。かぞえる人の体調にもよるかな。\\\\\\\\\\\\\\
921:132人目の素数さん
20/03/21 17:33:07 hCC4s83x.net
面積5のものとか、面積8のものの個数が1個というのが、明らかにおかしい。
問題図の対称性からして、二個になるはず。
従って問題図が改変されていると思われるが、そのほかにも、
「組み合わせてできる」と書かれているのだから、
単独でできている面積1の正方形を加えるているのもおかしい。
922:イナ
20/03/21 17:49:45.26 gmytXLCF.net
前>>890
正方形1個を「組み合わせてできる」とみなすかどうか。
正方形1個で正方形も長方形とみなすなら長方形15個(おそらく除外)
正方形2個で長方形20個
正方形3個で長方形12個
正方形4個で長いの6個と四角いの6個=12個 正方形5個で長方形2個
正方形6個で長方形6個
正方形8個で長方形2個
正方形9個で長方形1個
20+12+12+2+6+2+1=55
∴55個
(ただし、正方形1個を組み合わせてできるとみなすなら70個)
正方形を長方形とみなさないなら、7個減って48個。
923:132人目の素数さん
20/03/22 11:03:34 ZQwSvxOc.net
面積1の個数のほうが面積2の個数より少ないってことは図によってはあり得るのか
924:132人目の素数さん
20/03/22 11:22:38.32 ZQwSvxOc.net
本当の設問の図形はこれなのかな?
URLリンク(iup.2ch-library.com)
925:8181111.jpg
926:132人目の素数さん
20/03/22 11:24:37 vmG/vxS6.net
>>887
左右逆転してるけど、下のように正方形が並んでいた場合なら、
あの解答は、正当な解説になる
□
□□
□□□□
□□□□□
927:132人目の素数さん
20/03/22 11:26:17 vmG/vxS6.net
かぶってしまった orz
928:132人目の素数さん
20/03/22 11:45:23 zlQWCZFO.net
ごめん。
オレ>>884の問題の意味からわからないんだけどコレ何を聞いてるの?
誰か問題の意味を解説してもらえませんか?
929:132人目の素数さん
20/03/22 12:54:08.52 LapwV+OE.net
誰がclickなんぞするか
930:132人目の素数さん
20/03/22 13:07:10.73 hgHTGJOT.net
Youngさんのお勉強かな
931:132人目の素数さん
20/03/22 13:30:58 BUSW/Nah.net
>>888
2×3の長方形では
面積1は6個だけど面積2は7個ですよ
932:132人目の素数さん
20/03/22 13:31:18 KgHKBQpy.net
>>814 への解答として >>829 は正しいのでしょうか。
異なる奇素数p,qに対して
U_1=「pで割ると余りがaになる整数の集合」、U_2=「pで割ると余りがbになる整数の集合」
V_1=「qで割ると余りがcになる整数の集合」、V_2=「qで割ると余りがdになる整数の集合」
とするとき、U_1,U_2,V_1,V_2 の合併が整数全体になりうるか?
というのが>>814ですが、
一方>>829 で示されたのは
「4つの集合 (U_i)∩(V_j) (i=1,2 ; j=1,2) の合併は整数全体になれない」
ということのように思えるのですが。
933:132人目の素数さん
20/03/22 14:11:48 UzZngtr+.net
>>829であってるよ
934:132人目の素数さん
20/03/22 15:34:43 vmG/vxS6.net
>>901 さんの指摘は正当なもの。
ただし、問題の意図がどちらなのかは不明。
意図が>>829さんが解釈した通りなら、もちろんそのままでokだが、そうじゃない方の意図だと、
解答としてちょっと足りないことになるが、その場合でも、少々の修正で対応可能。
題意のような事を成立させることができたとする。つまり、
「うまくp,q,・・・,s そして a,b,c,d,・・・,h,iを選ぶ(a~iの方は異なってなくていいです)と
これらの集合で整数全体を覆うこと」ができたとする。
このとき、pで割ったときの余りが、aでもbでもない、別の値で、
残りの素数で割ったときの余りが、上で想定したものだった場合、どうなるかを考えればよい。
935:132人目の素数さん
20/03/22 16:49:10 EEw4okQP.net
URLリンク(uploader.sakura.ne.jp)
この問題ですが、解き方が分かりません。
AC>DAを前半の条件を使って証明するように思うのですが、一体どうやって・・・?
936:132人目の素数さん
20/03/22 17:46:37 ZQwSvxOc.net
>>904
△ABDと△CBDは1辺(BD)とその両端の角が等しいので合同
対角線の交点をEとすると△AEDと△CEDは2辺とその間の角が等しいので合同
∠AEDと∠CEDは等しく、また足すと180°なのでそれぞれ90°
条件から∠ADEは30°より大きいのでAEはADの半分よりも長い
なのでACはADより長い
以下はわかっているようなので略
937:132人目の素数さん
20/03/22 20:48:40 fYa2zo9P.net
>>867
愛し合うのは良いことですが、スレチですね。
まづ
x^3 +y^3 +z^3 -3xyz
= (x+y+z){(xx+yy+zz) - (xy+yz+zx)}
= (x+y+z){(x-z)^2 + (y-z)^2 + (x-y)^2}/2
と因数分解し、次に
x+y+z ≧ x+y-2z = 2{(x+y)/2 - z},
と
(x-z)^2 + (y-z)^2 = 2{(x+y)/2 - z}^2 + (1/2)(x-y)^2,
を使う。
(右辺) ≧ 2{(x+y)/2 - z}^3 + (3/4)(x+y+z)(x-y)^2.
938:132人目の素数さん
20/03/23 00:18:44 O5lTfF0I.net
4(x^3+y^3+z^3-3xyz)
=(x+y+z)(4x^2+4y^2+4z^2-4xy-4yz-4zx)
=(x+y+z)(x^2+y^2+4z^2+2xy-4yz-4zx+3x^3+3y^3-6xy)
=(x+y-2z+3z)((x+y-2z)^2+3(x-y)^2)
=(x+y-2z)^3+3(x+y-2z)(x-y)^2+3z((x+y-2z)^2+3(x-y)^2)
従って x^3+y^3+z^3-3xyz-2((x+y)/2-z)^3=(3/4)((x+y+z)(x-y)^2+z((x+y-2z)^2))≧0
等号は x-y=0 かつ x+y-2z=0 つまり、x=y=z の時
>>906 等号条件出せます?
939:132人目の素数さん
20/03/23 20:25:57 iGIA+aiF.net
大、中、小の3個のサイコロを投げるとき、その目の積が6の倍数になる場合の数を求めよ。
よろしくお願いします。
940:132人目の素数さん
20/03/23 23:00:54 kXW2FQX7.net
?6が含まれる場合 6^3-5^3=(6-5)?[k=1,3]6^(3-k)5^(k-1)=6*6+6*5+5*5=36+30+25=91
?1か5のどれかと2と4のどれかと3が出る場合 3!*2*2=24
?2と4と3が出る場合 3!=6
?2と4のどちらか二つと3が出る場合 3!/2!*2=6
?2と4のどれかと3が二つ出る場合 3!/2!*2=6
941:132人目の素数さん
20/03/23 23:06:21 gHGXcPrN.net
6が3個 1
6が2個 3C2*5=15
6が1個 3C1*5*5=75
以下6が0個
3が2個 3C2*2=6
3が1個 3C1*(4*4-2*2)=36
1+15+75+6+36=133
942:132人目の素数さん
20/03/24 00:44:10 /QqkwKRd.net
別解1
1:2の倍数でも3の倍数でもない目
x:2の倍数の目
y:3の倍数の目
とすると、サイコロの目は、1から順に 1,x,y,x,1,xy となる
(1+x+y+x+1+xy)^3=(2+2x+y+xy)^3=(1+x)^3(2+y)^3
=(1+7X)(8+19Y)=1+56X+19Y+133XY (X,Yはそれぞれ、2の倍数、3の倍数となっている目を表している)
2の倍数かつ3の倍数になっているのは、XYの係数に表れるので 133が答
別解2(別解1の解釈改変版)
サイコロの目は2の倍数が2,4,6、3の倍数が3,6と周期的に、かつ独立に存在する。
そこでサイコロを、0と1だけが出る2値ルーレットと、0と1と2がでる3値ルーレットの
二つが組み合わさったものと見なし、それぞれ三回ずつ回すこととする。
二値ルーレットの0は2の倍数、3値ルーレットの0は3の倍数に対応させると、
二値ルーレットで少なくとも一回0が出て、3値ルーレットでも少なくとも一回0がでる場合の数はと
問題を読み替えることができ、前者は 1-(1/2)^3 の確率で起こり、後者は 1-(2/3)^3の確率で起こる
6^3*(1-(1/2)^3)*(1-(2/3)^3)=(2^3-1^3)*(3^3-2^3)=(8-1)*(27-8)=7*19=133
943:132人目の素数さん
20/03/24 00:51:52 0XFW938Q.net
>>910が一番わかりやすいな
944:132人目の素数さん
20/03/24 02:38:19 MOWxPvKi.net
>>908
サイコロがn個の場合
・6が1個はある。
#{1~6} - #{1~5} = 6^n - 5^n,
・6がなく、3があり、かつ偶数がある。
#{1~5} - #{1,2,4,5} - #{1,3,5} + #{1,5}
= 5^n - 4^n - 3^n + 2^n,
・合わせて 6^n - 4^n - 3^n + 2^n.
945:132人目の素数さん
20/03/24 03:11:37 MOWxPvKi.net
チョト改良・・・・
・3の倍数があり、かつ偶数がある。
#{1~6} - #{1,2,4,5} - #{1,3,5} + #{1,5}
= 6^n - 4^n - 3^n + 2^n,
{1,5} = (Z/6Z) ’ ・・・・ 正則元全体の集合
#{1,5} = φ(6) = 2 ・・・・ Euler totient function
946:132人目の素数さん
20/03/24 07:50:21.61 5Ma9u8tC.net
>>910
3が1個のところで4^2-2^2を使っているのに6のところで6^3-5^3を使っていないのがちょっと謎
947:132人目の素数さん
20/03/25 05:34:12 jP3QxIN+.net
>>901
そうですね。正当な指摘ですね。
ちょっと足りないので、少々の修正をします。
pで割った余りは 0~p-1 のpとおり
qで割った余りは 0~q-1 のqとおり
・・・・
sで割った余りは 0~s-1 のsとおり。
したがって、これらの組合せは pq・・・s = N とおりある。
一つの組合せをみたす自然数は {1,2,・・・・,N} 中に高々1個しかない。 >>829
∴ 任意の組合せの自然数が {1,2,・・・・,N} 中に存在する。
その中に
「pで割った余りがa,b以外で、 qで割った余りがc,d以外で、・・・・・、
sで割った余りが h,i以外のもの」
も存在する。(p,q,・・・,s
948:は奇素数だったから)
949:132人目の素数さん
20/03/25 06:08:38 jP3QxIN+.net
>>907
x^3 + y^3 + z^3 - 3xyz
= (x+y+z){(x-z)^2 + (y-z)^2 + (x-y)^2}/2
= (x+y+z){(x+y)/2 - z}^2 + (3/4)(x+y+z)(x-y)^2
≧ (x+y-2z){(x+y)/2 - z}^2 + (3/4)(x+y+z)(x-y)^2 (← x+y-2z=0)
= 2{(x+y)/2 - z}^3 + (3/4)(x+y+z)(x-y)^2
≧ 2{(x+y)/2 - z}^3 (← x-y=0)
かな
950:132人目の素数さん
20/03/25 06:30:55 jP3QxIN+.net
>>914
m面サイコロがn個で
m = pq・・・s (相異なる素数)
のときは
Σ[i=0,1][j=0,1]・・・・[L=0,1] (-1)^(i+j+・・・・+L) {(p-i)(q-j)・・・・(s-L)}^n
とおり かな
951:132人目の素数さん
20/03/25 14:49:35 HGxb7s8y.net
>>917
>> = (x+y+z){(x+y)/2 - z}^2 + (3/4)(x+y+z)(x-y)^2
>> ≧ (x+y-2z){(x+y)/2 - z}^2 + (3/4)(x+y+z)(x-y)^2 (← x+y-2z=0)
この変形ならok
しかし、>>906では
>> x+y+z ≧ x+y-2z = 2{(x+y)/2 - z}
と使われていた。こちらは間違い。
これでは、不等式が、 x+y+z ≧ x+y-2z つまり、z ≧ -2z 由来となり、
等号がz=0(偽の条件式)の時、成立となる。
一方、上の式の両辺に、{(x+y)/2 - z}^2 がかけられた形
(x+y+z){(x+y)/2 - z}^2 ≧2{(x+y)/2 - z}^3
なら、等号は、x+y+z=x+y-2z または、(x+y)/2 - z=0 のときに成立することになり、
自動的に後者が成立条件となる
952:132人目の素数さん
20/03/26 04:33:19 zUlAmjt2.net
>>906
の式は
x+y+z > x+y-2z = 2{(x+y)/2 - z}
と訂正します。
ところで・・・
? = (x-y)(y-z)(z-x),
とおくと
〔楠瀬の不等式〕
x^3 +y^3 +z^3 -3xyz ≧ k・|?|,
k = √(9+6√3) = 4.403669475
等号は (x,y,z) = (0.69666,0.30334,0) のとき。
数学セミナー、1992年7月号、p.59-60 エレ問、優秀賞2
これに倣って
x^3 +y^3 +z^3 -3xyz -2{(x+y)/2 - z}^3 ≧ 4.401355557|?|,
等号は (x,y,z) = (0.6978192,0,0.3021808) のとき。
953:132人目の素数さん
20/03/26 08:57:39.08 7CY04xkr.net
>>828
久しぶりぶりに見たら、やっぱりキチガイがレスつけてたか
相変わらずスレ荒らすだけが生きがいなんだな
早く死ね
954:132人目の素数さん
20/03/26 17:34:04 43rv7M40.net
と、キチガイが隔離病棟から
955:132人目の素数さん
20/03/26 17:51:16 zLkpp+8g.net
>>916
>その中に
>「pで割った余りがa,b以外で、 qで割った余りがc,d以外で、・・・・・、
>sで割った余りが h,i以外のもの」
>も存在する。(p,q,・・・,sは奇素数だったから)
最後のこの部分が議論に飛躍があるような気がしなくもないのは
気のせいか。
956:132人目の素数さん
20/03/26 18:45:53.21 CKIN19Po.net
x=-x
両辺をxで割ると1=-1となり矛盾
この矛盾は0で割ったことによって生じたのでx=0
これって数学的に正しいんですか?
957:132人目の素数さん
20/03/26 18:49:33.25 XhJa0zMz.net
「ので」だけおかしい
958:132人目の素数さん
20/03/26 18:53:06.61 XhJa0zMz.net
いや違うわ、「0で割ったことによって生じたので」がおかしい
xで割ってる時点で0でないと仮定してる、その仮定がおかしかったと表現すべき
959:132人目の素数さん
20/03/26 18:58:02.73 CKIN19Po.net
ですよね
自称進のクソ教師が作った背理法のプリントに書いてありました
960:132人目の素数さん
20/03/26 19:09:23.85 N/LrQuZY.net
Z案シンパが作ったプリントか
961:132人目の素数さん
20/03/26 23:12:13 Yz6nkfGn.net
xy座標で定点a,b,cが与えられているとき
a,b,cを頂点とする平行四辺形の第四頂点が3個あることの証明を教えてください
962:132人目の素数さん
20/03/27 04:54:25 GzR1OrPK.net
中点三角形が abc となるような大三角形 ABC をとる。
つまり、重心Gのまわりに -2倍に拡大する。
↑OG = (↑Oa + ↑Ob + ↑Oc)/3,
↑OA = ↑Ob + ↑Oc - ↑Oa,
↑OB = ↑Oa + ↑Oc - ↑Ob,
↑OC = ↑Oa + ↑Ob - ↑Oc,
第四頂点dは上のA,B,Cのいずれかである。
963:916
20/03/27 08:14:58.65 GzR1OrPK.net
>>923
はい、そうです。
964:132人目の素数さん
20/03/27 08:21:18.12 peONiMlE.net
>>924
965:背理法の表現方法とは別に、0で成り立つことを言う必要があるんじゃないんかな 背理法の部分は0以外では成り立たないことを示したに過ぎない
966:132人目の素数さん
20/03/27 13:39:27.20 LhU29zbf.net
(4-1)!/2
967:イナ
20/03/27 13:44:04.66 TsOzhBl8.net
前>>892
>>929
四点目をd,d',d''とする。
abの中点をoとすると、
→ad=→ac+2→co
=→ac+2(→ao-→ac)
=2→ao-2→ac
=→ab-→ac
=→cb─①
acの中点をpとすると、
→ad'=→ab+2→bp
=→ab+2(→ap-→ab)
=2→ap-→ab
=→ac-→ab
=→bc─②
bcの中点をqとすると、
→ad''=2→aq
=2(→ao+→ap)
=2→(→ab/2+→ac/2) =→ab+aac②─③
∴②③より、、
示された。。
968:イナ
20/03/27 13:48:50.08 TsOzhBl8.net
前>>934
文字化けして終盤が書けないけど、点d,d',d''が異なることがベクトルで示せると思う。
969:132人目の素数さん
20/03/27 18:28:03 CoowjcjS.net
>>924
x=-x → x=0
は正しいしそれはその背理法で示されているよ
>>932
逆向きはこの際必要ないのでは?
970:132人目の素数さん
20/03/27 18:31:08 +EbTdEAA.net
>>924
背理法以前の問題
日本語がゴミすぎて証明になってない
971:132人目の素数さん
20/03/27 18:32:54 +EbTdEAA.net
もし背理法を用いたいのであれば
背理法で示す
~を仮定する
~は~である ?
一方~は~である ?
?と?は両立し得ないので不合理である
ゆえに背理法により~である
これくらいの日本語を使って欲しい
972:132人目の素数さん
20/03/27 18:38:18 6SE+TtqT.net
どうせバカガキが教師の作ったプリントの
自分に都合のいい一部をぬきだして改変して書いてるんだろ
ガキは馬鹿だからいちいち真に受ける必要なし
973:132人目の素数さん
20/03/27 18:55:05 iw10mp8D.net
>>939
このスレに来ないでくださいね
974:132人目の素数さん
20/03/27 20:01:22.26 LhU29zbf.net
>>933 は >>929 の答
異なる4玉の数珠順列
975:132人目の素数さん
20/03/27 21:43:04 0CEq6ZGF.net
>>936
「この矛盾は0「でない数」で割ったことによって生じたのでx=0」
と言いたかった単純ミスなのは明らかだが、抜けた言葉が悪く
「×この矛盾は0で割ったことによって生じたのでx=0」
となって意味が逆になってしまっている
976:イナ
20/03/28 01:11:05.17 zOKjl8OR.net
前>>935
>>929
四点目をd,d',d''とし、
abの中点をoとすると、
→ad=→ac+2→co
=→ac+2(→ao-→ac)
=2→ao-2→ac
=→ab-→ac
=→cb─①
acの中点をpとすると、
→ad'=→ab+2→bp
=→ab+2(→ap-→ab)
=2→ap-→ab
=→ac-→ab
=→bc─②
bcの中点をqとすると、
→ad''=2→aq
=2(→ao+→ap)
=2→(→ab/2+→ac/2)=→ab+→ac─③
①②よりd,d'はaについて対称な点であり、
かつad=ad'=bc
図を描くとadbcおよびabcd'はともに平行四辺形だとわかる。
③よりabd''cは平行四辺形。
∴示された。
977:132人目の素数さん
20/03/28 03:19:57 vI49Noha.net
方べきの定理で点Pが円外にある場合にPA・PB=PT^2(Tは接点) となりますが
Pが円内にある場合に同じようにPA・PB=PT^2となるような点Tを選べないのでしょうか?
978:132人目の素数さん
20/03/28 03:32:24 vI49Noha.net
ああ。中心とPを結んだ線に垂直な弦の交点をTとすればいいのか。
979:132人目の素数さん
20/03/28 11:47:03 GB5uxKLH.net
>>944
↑OA = a, ↑OB = b, ↑OP = p とおく。
|a| = |b| = R.
↑AP = p-a と ↑PB = b-p は弦ABに平行で、 (↑OA+↑OB) = a+b に垂直。
より
AP・BP = (↑AP,↑PB)
= (p-a, b-p)
= (a+b, p) - (p, p) - (a, b)
= (a+b, (p-a)/2)) + (a+b, (p-b)/2) - (p, p) + (a, a)/2 + (b, b)/2
= - (p, p) + (a, a)/2 + (b, b)/2
= - OP^2 + RR (一定)
980:132人目の素数さん
20/03/28 12:02:59 GB5uxKLH.net
>>935
d = a + b - c,
d' = c + a - b,
d" = b + c - a,
から
d - d' = 2(b-c) ≠ 0,
d' - d" = 2(a-b) ≠ 0,
d" - d = 2(c-a) ≠ 0,
よって異なる。
981:132人目の素数さん
20/03/28 12:28:19 Om+P0XX
982:F.net
983:132人目の素数さん
20/03/28 18:30:21 CMiZ6X5Z.net
うわレスにアホしてるイナがいる
984:面白そう、あたしもやってみよ
20/03/28 18:34:07 63+cXYsM.net
うわイナにレスしてるアホがいる
985:132人目の素数さん
20/03/28 19:04:53 CMiZ6X5Z.net
うわアホにイナしてるレスがいる
986:イナ ◆/7jUdUKiSM
20/03/28 19:22:33 zOKjl8OR.net
前>>943
おらんやろ。
987:132人目の素数さん
20/03/28 20:05:00 lPzYf6t3.net
>>942
元の「証明」を書いた本人は
そういう意図ではないと思われ。
988:132人目の素数さん
20/03/28 20:05:35 lPzYf6t3.net
>>943
それが「3つであること」の証明になってるの?
989:132人目の素数さん
20/03/28 20:14:22 SWAFOgEC.net
うわイナにレスしてるアホがいる
990:イナ ◆/7jUdUKiSM
20/03/28 20:24:24 zOKjl8OR.net
前>>952
>>954なってるじゃん。
aについてpとp'が対称な点で、apとap'の双方に平行なbcを対角線とする平行四辺形abd''cのaの対角にd''があるってベクトルで示したじゃん。
dとd'とd''は異なる3点じゃん。
991:132人目の素数さん
20/03/28 20:31:13 CMiZ6X5Z.net
うわレスにイナしてるアホがいる
992:132人目の素数さん
20/03/28 21:55:38 PUpEaIHI.net
あほイナと言えば昔『あほの稲川』人呼んで『あほ稲』成る、この様なアクの塊の様な方が居た。
284:あほの稲川 ◆yVMaGzwEOM 2010/03/10(水) 21:36:41 ID:???[sage]
仕事なんかする必要ないんじゃ!!
時間の無駄なんじゃ!!
毎日必死なって1日中働いとる奴あほや!!
金もらっても時間ないし何もできんやんけー!!
しょーもない人間関係でストレス溜まるだけじゃ!!
今はギャンブルで飯食う時代じゃボケー!!
何もかも自由じゃあほんだら~!!
わしは過去に職場で気に食わん奴をボコボコにしてから一切働いとらんわ!!
それと最近の若造ガリガリの癖して偉そうにいちびってんな!!
わしはこういう滅茶苦茶貧弱な奴で、
偉そうにいちびっとる奴見とったら蹴り飛ばしたくなるんじゃ!!
こいつらは茶碗についたご飯粒をぜ~~~ったい全部食いおらん!!
全部食わんかー!!
物粗末にしてんな!!
お前らみたいな罰当たり貧弱野郎は飯食わんでええんじゃ!!
飢え死にせーボケー!!
993:132人目の素数さん
20/03/29 07:05:34.74 aOvcdyIH.net
>>944
ΔOAB は二等辺三角形
OA = OB = R,
弦ABの中点をMとすると、
△OAM ≡ △OBM
∴ OM ⊥ AB
三平方の定理から
AM^2 = BM^2 = R^2 - OM^2
MP^2 = OP^2 - OM^2
よって
AP・BP = (AM+MP)(BM-MP)
= AM^2 - MP^2
= RR - OP^2 (一定)
994:132人目の素数さん
20/03/29 07:16:56.09 aOvcdyIH.net
>>944
点Pを通る2本の弦を APB, CPD とする。
円周角より ∠ABC = ∠ADC, ∠BCD = ∠BAD,
対頂角より ∠BPC = ∠APD,
よって △BCP ∽ △DAP,
∴ AP・BP = CP・DP (一定)
995:132人目の素数さん
20/03/29 10:23:35 SZJbaDRP.net
うわアホ
996:132人目の素数さん
20/03/29 10:50:04 nRAoQPaJ.net
>>956
4つ以上ある可能性は?
997:132人目の素数さん
20/03/29 10:51:37 nRAoQPaJ.net
>>956
君が「証明」と称しているものは
3つあることを前提として
その3つの位置を求めたにすぎない。
998:132人目の素数さん
20/03/29 10:52:35 SZJbaDRP.net
伊那かっぺい
999:イナ
20/03/29 14:52:10.89 MDUQhG4d.net
前>>956
これだから証明は。
題意が3点あるって言うからd,d',d''を名づけたんじゃないか。それで実際に相異なる3点があることを示した。
これでいいじゃないか。
これ認めないなら3点ないんじゃないの。いいよ、4点あるなら4点で。4点あるとしても4点目は問題外だし。
1000:132人目の素数さん
20/03/29 15:03:19.41 JRmMrhDY.net
数Aレ�
1001:xルに達してないんだから証明問題は無理
1002:132人目の素数さん
20/03/29 15:48:25 Jdcm0osu.net
アホがイナに構うからイナが元気になりだしたじゃねーか
こうなるからやめろって言ってんだよアホ
1003:132人目の素数さん
20/03/29 16:00:15 SZJbaDRP.net
イナがアホに構うからアホが元気になりだしたじゃねーか
こうなるからやめろって言ってんだよイナ
1004:132人目の素数さん
20/03/29 16:04:45 PFZiPM+0.net
小学生混じってんな
1005:132人目の素数さん
20/03/29 17:02:58 nRAoQPaJ.net
>>965
>>929に書いてあることをちゃんと読め。
何を示せと書いてある?
1006:132人目の素数さん
20/03/29 17:08:56 ga9U5ERj.net
イナに日本語通じると思ってるキチガイおるな
そんなアホな脳みそでは数学もイナよりはマシ程度のゴミだろうな
1007:132人目の素数さん
20/03/29 17:15:27 x2be6whs.net
連鎖ngすればいいよ
イナはただの嵐だけど、こんなのにレスするやつは真正の頭悪いやつだからそいつらも消えて一石二鳥
1008:132人目の素数さん
20/03/29 17:21:36 SZJbaDRP.net
マシに日本語通じると思ってるキチガイおるな
そんなイナな脳みそでは数学もアホよりはイナ程度のゴミだろうな
1009:132人目の素数さん
20/03/29 17:22:25 +xqsj7T8.net
スレの流れをアホどもの言い合いに持ってかれる時点で被害なんだよなぁ
1010:132人目の素数さん
20/03/29 17:23:14 +xqsj7T8.net
>>972
へのレスね
1011:132人目の素数さん
20/03/29 17:42:42 o4cAnRaa.net
てかイナの長文レス読むのすごい。
どうせくだらないことしか書いてないのわかってるのに。
どこからそのモチベーションが?
1012:132人目の素数さん
20/03/29 18:09:58 nMCXnoyb.net
>>970
次スレよろ
1013:132人目の素数さん
20/03/29 21:20:11 nRAoQPaJ.net
>>977
ホストが悪くて申し訳ないが立てられない。
1014:132人目の素数さん
20/03/29 21:23:17 ggkqe8Ly.net
なら970とるなよ……
1015:132人目の素数さん
20/03/30 00:22:03 1rX+0Q6A.net
立ててきた
高校数学の質問スレPart404
スレリンク(math板)
1016:132人目の素数さん
20/03/30 00:24:56 Of1REy9C.net
乙
イナ ◆/7jUdUKiSM という荒らしがいるので反応しないようにしましょう
とかテンプレに入れてもいいかもな
1017:132人目の素数さん
20/03/30 11:24:53.78 nYqN9M5G.net
入れていいと思う
1018:132人目の素数さん
20/03/30 15:03:49 xNL0/gu1.net
イナ ◆/7jUdUKiSMさんがんばって!
1019:132人目の素数さん
20/03/30 15:15:27 zVo9C+nc.net
ほんと高校数学スレだからガキが混ざってくるな
でもガキは幼いからその幼稚さを理解できないんだよな
死ねよ荒らし
1020:132人目の素数さん
20/03/30 15:17:43 o30xKtxA.net
イナ ◆/7jUdUKiSM という数学を理解できない荒らしがいるので反応しないようにしましょう
反応する人も数学を理解してない荒らしです
なおこれは暫定のテンプレです
反対意見が万が一あれば議論してください
1021:132人目の素数さん
20/03/30 15:18:12 o30xKtxA.net
書いといた
1022:132人目の素数さん
20/03/30 15:32:42 mJ6EF41a.net
馬鹿にしてて草
まぁ馬鹿にされるようなことしてるから異論はないけど
1023:132人目の素数さん
20/03/30 20:21:17 uxzDymBq.net
>>954
平行四辺形の4頂点の並びは
d が ab間に入る → ◇adbc
d' が ac間に入る → ◇abcd'
d" が bc間に入る → ◇abd"c
の三とおりあり、それぞれ1点に決まる。
1024:132人目の素数さん
20/03/30 22:11:08 uxzDymBq.net
>>961
うわアホにレスしてるイナがいる
と言いたかった?
とするとまだ出てないのは一つだけ。
うわイナにアホしてるレスがいる
1025:132人目の素数さん
20/03/30 22:29:58 SCmWmEN7.net
>>989
なにいってんだ包茎のくせに
1026:132人目の素数さん
20/03/30 22:31:25 Y+NgZsAC.net
稲川会系暴力団内の組の組長の実子
♪仁義なき戦いのメインテーマ
1027:イナ ◆/7jUdUKiSM
20/03/30 23:07:29 psAYFPlW.net
次スレでもうちょい骨のある問題が出たらどうする? 前>>965とんでもねぇ、あたしゃ神様だよ。
/∥ ̄ ̄∥ ̄ ̄∥◇◇
∥_△ _△_□ ∥>◇/
彡´e)(`e` ミ 。∥◇/_
(っ[ ̄]っц)~ ∥>//_
「 ̄ ̄ ̄ ̄]_∥/_/_
□/U
1028:U__UU□/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/
1029:132人目の素数さん
20/03/30 23:23:07 Y+NgZsAC.net
神は神でも疫病神であり貧乏神であり八十禍津日神である
1030:132人目の素数さん
20/03/30 23:52:12 5nWgo/Ud.net
>>985
異議なーし!
1031:132人目の素数さん
20/03/31 01:18:00 0eySXOLI.net
おれは反対
イナは荒らしではないし、イナの間違いを指摘すると数学が理解できない認定もイミフ
1032:132人目の素数さん
20/03/31 02:29:52 n/RKlgvU.net
>>988
同じことだけど
aの対角が bのとき、cのとき、dのとき
でいいよね
1033:132人目の素数さん
20/03/31 07:49:58.05 MFGAiNvG.net
>>995
イナは誤りを指摘され、なぜ誤りなのかを論理的に説明されてもなおその指摘を無視して意味不明な主張を繰り返すことがある
そういうときは完全に荒らしと言えると思う
1034:132人目の素数さん
20/03/31 08:06:00 +LMTnMxG.net
だらだら書いて間違いとかいらねーよそんなクズ
1035:132人目の素数さん
20/03/31 16:32:58 syVMD0lp.net
×繰り返すことがある
○繰り返すことばかりしている
1036:132人目の素数さん
20/03/31 18:58:12 YCC1OV1o.net
はい1000ゲット
馬鹿どもざまあみろ!
1037:1001
Over 1000 Thread .net
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 81日 13時間 34分 4秒
1038:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています