20/01/10 18:37:32.69 jmw8DMZb.net
まず時枝先生の記事の方法ではダメ。
記事の方法ではxやyをある番号以降全部開けてその値に応じて戦略を決定している。
つまり全事象をC(x)やC(y)などに応じて決定している事になるが、これだと全事象を非可算無限個に分割して定義している事になる。
しかしこのようにして定義された関数は一般には可測関数にならない。
場合わけして定義するのは構わないが、その時には可測な高々可算無限個までにわけて、その各々で可測関数として定義されている場合でなければ一般には標本空間上のただの関数でしかなく、可測集合の構成に利用できるような可測関数になるかどうかはわからない。
よって時枝戦略で重要な意味を持つd(x)などの関数はこのままでは可測関数になるかどうかはわからない。
可測関数でなければそもそも確率そのものが定義できない。
ココが議論の第一点。
ではしかし時枝先生の記事の定義がダメとして、絶対にこれらの関数が可測になる事は本当にありえないのか、別の定義を採用すれば回避できるのではないかが次の論点。
しかしコレからジムに遊びに行くので続きはまた今度。