19/12/25 12:08:40.77 xYwdBxRF.net
>>58
>では位相空間はなにに設定するのですか?
>近傍族はなんですか?
ほいよ(^^
(>>35より再録)
URLリンク(ja.wikipedia.org)
極限順序数
(抜粋)
特徴付け
極限順序数は他にもいろいろなやり方で定義できる:
・順序数全体の成す類において順序位相(英語版)に関する極限点 (ほかの順序数は孤立点となる)。
(引用終り)
"順序位相(英語版)"
より、下記
まあ、確かに、 (a,∞)とか”∞”が定義されていないと、
循環論法になるけど、
”∞”が先に別の仕方で定義されていれば、これで良いだろ
URLリンク(en.wikipedia.org)
Order topology
(抜粋)
In mathematics, an order topology is a certain topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets.
If X is a totally ordered set, the order topology on X is generated by the subbase of "open rays"
(a,∞)={x | a<x}}
(-∞,b)={x | x<b}}(
for all a, b in X. Provided X has at least two elements, this is equivalent to saying that the open intervals
(a,b)={x | a<x<b}}
together with the above rays form a base for the order topology. The open sets in X are the sets that are a union of (possibly infinitely many) such open intervals and rays.
A topological space X is called orderable if there exists a total order on its elements such that the order topology induced by that order and the given topology on X coincide. The order topology makes X into a completely normal Hausdorff space.
The standard topologies on R, Q, Z, and N are the order topologies.
Contents
1 Induced order topology
2 An example of a subspace of a linearly ordered space whose topology is not an order topology
3 Left and right order topologies
4 Ordinal space
5 Topology and ordinals
5.1 Ordinals as topological spaces