20/03/21 20:28:59 gPebnXHG.net
>>568
おサルさー、おまえ mathoverflowの DR Pruss氏議論が分かっていない 質問者 Denis氏そっくりの理解じゃんかw(゜ロ゜;
DR Pruss氏は、”That's a fine argument assuming the function is measurable. But what if it's not?”ってあるよね
で、質問者 Denis氏は、この議論には、全く入れなかった
ただ、壊れたレコードのように
”Our choice of index i is made randomly, but for this we only need the uniform distribution on {0,…,n}. It is made independently of the opponent's choice. ? Denis Dec 17 '13 at 15:21”
を繰返したのだった(^^;
(>>553より参考)
URLリンク(mathoverflow.net)
Probabilities in a riddle involving axiom of choice Denis氏 Dec 9 '13
DR Pruss氏
(抜粋)
By a conglomerability assumption, we could then conclude that P(X<=Y)=0, which would be absurd as the same reasoning would also show that P(Y<=X)=0.
In general, Mj will be nonmeasurable (one can prove this in at least some cases). We likewise have no reason to think that M is measurable. But without measurability, we can't make sense of talk of the probability that the guess will be correct.
That's a fine argument assuming the function is measurable. But what if it's not?
So there is an extension P′ of P such that P′-almost surely the dumb strategy works. Just let P′ be an extension on which the set of representatives has measure 1 and note that the dumb strategy works on the set of representatives.
URLリンク(www.mdpi.com)
Symmetry and the Brown-Freiling Refutation of the Continuum Hypothesis
by Paul Bartha
Symmetry 2011, 3(3), 636-652;