現代数学の系譜 カントル 超限集合論2at MATH
現代数学の系譜 カントル 超限集合論2 - 暇つぶし2ch563:現代数学の系譜 雑談 古典ガロア理論も読む
20/03/14 19:43:31.94 r2jRdi7g.net
>>523-524
>なんで?
「なんで?」という問いは、”チコちゃんに叱られる!”でしばしば出現する
また、”夏休み子ども科学電話相談”では、しばしば 子供の素朴な質問に 専門家が回答する
さて、「なんで?」という問いに答えるのは、結構難しいことがあるのです
相手の知識レベルが低い場合、”専門的な説明が理解されない”ことになるから
「なんで?」と聞いた貴方のレベルが分からない。もし、おサルなら、私には「分からせる」自信がない
だが、一応、できる限り説明をしてみようと思う
<時枝不成立の説明>
1.時枝記事については、上記の>>358辺りを 見て欲しい
2.時枝の数当て原理:
 1)問題の可算無限の数列sがあって、数列のしっぽの同値類を決めて(それをEとする)、その代表列rとの比較によって、決定番号dが決まる
  (決定番号の定義などは、上記時枝記事をご参照)
 2)いま、d+1以降のしっぽ側の箱を開ければ、同値類Eが分かり、決定番号がdと仮定すると、問題の数列sのd番目sdと代表列rのd番目rdで、決定番号の定義よりsd=rdであり 箱を開けずに 中の数を的中できるとする
 3)問題は、どうやって、決定番号dを推測し d+1以降のしっぽ側の箱を開けてることができるのか?
  (もし、決定番号dより先頭に近いところ 例えば d-1 から開ければ、同値類Eが分かっても、決定番号dの箱は開封さてしまっているから、数当ては失敗する
 4)そこを、時枝記事では、複数列の決定番号d1,d2などの比較ではぐらかす (実際には、できないのに)
3.時枝の数当ての問題:
 1)既に、十六元数列で例示したように、数列のしっぽの同値類、代表、決定番号は、箱に入れる ”数の体系”に依存しない (多元数などなんでもあり)
  (つまり、包含関係で、大は小を兼ねるで、{0,1}^Nの数当てにR~Nが使えるという。これを一般化すれば、十六元数列S^Nで、実数列R^Nでも{0,1}^Nでも、同様に確率1-εで的中できるという)
 2)ところで、十六元数をさらに多元数に置き換えることも可能。100元数でもなんでも可。大きなn元数で、ベルヌーイ列{0,1}^Nが当たるという。これは おかしい !!
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch