現代数学の系譜 カントル 超限集合論2at MATH
現代数学の系譜 カントル 超限集合論2 - 暇つぶし2ch503:現代数学の系譜 雑談 ◆e.a0E5TtKE
20/03/12 18:34:26 FZfOcjPG.net
>>465 補足の補足

1)時枝の数列の しっぽ 同値類と 代表による数当てで、DR Pruss氏の指摘
2)本来、コイントス(=coin flips)で、Ω={0,1}^N なら、{0,1}の数列の 同値類と 代表なら、まだスジは通っている
 だが、「実数Rの数列の 同値類と 代表 って、なんだそれは~っ!」 てことですよねw(゜ロ゜;
3)さらに さらに、時枝の数当て論法は、複素数の数列でも同じことができるでしょw
 数列 Z:Z1,Z2,・・Zi,・・ で、しっぽ同値類と、自然数の代表番号d を使って、全く同じ論法で、代表での複素数 Zi で当てられるはず
4)ところで、この話は、上記のコイントス {0,1}と完全に類似で、代表から 複素数 Zi =Xi +Yi√-1 が 数当ての候補として上がるけど
 実数R ⊂ 複素数Z であるから、実数列 X:X1,X2,・・,Xi,Xi+1・・ でも当たりますよね~w
5)しかし、上記のコイントスと同じで、複素数の代表で Ziが出てきて、Zi =Xi +Yi√-1で、Yi≠0って なんか変でしょ
6)同じ論法は、4元数の数列でも可だし、8元数の数列でも可だし・・・ って、それって なんか変でしょ?
7)結局、DR Pruss氏は、mathoverflowの回答で指摘しているように
 「the function is measurable.」ならば 良いが、そうでないときは、この手法 ダメってことじゃないですかね?w(^^;

(参考)
URLリンク(ja.wikipedia.org)
確率変数
(抜粋)
概念の拡張
統計学における基本として、確率変数がとる値は実数であり、従って期待値や分散その他の値を計算することができる。しかし、実数以外の要素を値としてとる確率変数も考えられる。値として取る要素としては、ブール変数、カテゴリカル変数(英語版�



次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch