20/01/02 21:37:19.47 YLjNnjPy.net
>>221 補足
>>だいたい…{{}}…はただしくはシングルトンですらない
>>集合ですらないからだw
現代数学が分かってないな~
まず、定義ありきだよ
(下記の渕野先生の不完全性定理の話とか、ZFCGの話を見てごらんw(^^;)
その定義されたω=可算無限シングルトン を、どう理解するのか?
それは、極限から定まる性質を見ることだ
あなた方のいうことは、定義されたωを括弧={と }と を使ってどう表現すべきかってことでしょ?
一番外に 括弧= {と }とが、表現に、必要なら
{ …{{}}… }と表現するように、”表現”を定義すれば、良いだけのことだよw
(参考:渕野先生)
URLリンク(researchmap.jp)
カントルの精神の継承
無限集合の数学/超数学理論としてのカントルの集合論のその後の発展と,その「数学」へのインパクト
渕野 昌 2018 年 11 月 10 日 (23:10 CET) 版
P14
5 ゲーデルの加速定理と数学の自由性 ? 22世紀の数学としての集合論
P17
本稿の最初に引用した,[Cantor 1883] でのカントルの「数学の自由性」に関す
る言及は,広義の数学という意味で「科学の自由性」と読み替えたときにも,十
分に意義を持つものと思う
ゲーデルの第 1 不完全性定理は,数学の無尽蔵性と解釈することもできる (こ
の解釈に関しては,[渕野 2013],[渕野 2016] 等も参照されたい).
この考察を超数学で考察することで高次の証明を得
るという, 新しいタイプの数学研究を行なうことで,人間にとって
理解可能な数学の領域を拡張してゆくことが,近未来における
数学の存続のための重要な鍵の一つとなる,ということは十分に
あ�