現代数学の系譜 カントル 超限集合論2at MATH
現代数学の系譜 カントル 超限集合論2 - 暇つぶし2ch169:現代数学の系譜 雑談
20/01/01 10:25:53.58 G5rtMfGn.net
>>157
>>157 補足
可算無限個の箱に近い、現代数学の例が
下記の形式的冪級数の係数
a0,a1,a2,・・・ たちだな
係数 a0,a1,a2,・・・ たちに、具体的な数を入れることができる
箱に、数の代わりに { や, }を入れることができる
そうすれば、>>157の6ができる(箱の列を2つ用意する必要があるが)
URLリンク(ja.wikipedia.org)
形式的冪級数
(抜粋)
形式的冪級数(けいしきてきべききゅうすう、英: formal power series)とは、(形式的)多項式の一般化であり、多項式が有限個の項しか持たないのに対し、形式的冪級数は項が有限個でなくてもよい。
定義
A を可換とは限らない環とする。A に係数をもち X を変数(不定元)とする(一変数)形式的冪級数 (formal power series) とは、各 ai (i = 0, 1, 2, …) を A の元として、
Σ_{n=0}^{∞} a_n X^n=a0+a1 X+a2 X^2+・・・
の形をしたものである。
形式的冪級数全体からなる集合 A[[X]] に和と積を定義して環の構造を与えることができ、これを形式的冪級数環という。
(引用終り)


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch