暇つぶし2chat MATH
- 暇つぶし2ch957:現代数学の系譜 雑談 古典ガロア理論も読む
19/12/31 22:42:44.96 kpkOab9v.net
>>839 追加
URLリンク(www.uvm.edu)
Super QVNTS: Kummer Classes and Anabelian Geometry September 10-11, 2016
URLリンク(www.uvm.edu)
(抜粋)
KUMMER CLASSES AND ANABELIAN GEOMETRY JACKSON S. MORROW Date: April 29, 2017.
ABSTRACT. These notes comes from the Super QVNTS: Kummer Classes and Anabelian
geometry. Any virtues in the notes are to be credited to the lecturers and not the scribe;
however, all errors and inaccuracies should be attributed to the scribe. That being said,
I apologize in advance for any errors (typo-graphical or mathematical) that I have introduced.
CONTENTS
1. On Mochizuki’s approach to Diophantine inequalities
Lecturer: Kiran Kedlaya . . . . . . 2
2. Why the ABC Conjecture?
Lecturer: Carl Pomerance . . . . . 3
3. Kummer classes, cyclotomes, and reconstructions (I/II)
Lecturer: Kirsten Wickelgren . . . . . 3
4. Kummer classes, cyclotomes, and reconstructions (II/II)
Lecturer: David Zureick-Brown . . . . . 6
5. Overflow session: Kummer classes
Lecturer: Taylor Dupuy . . . . . 8
6. Introduction to model Frobenioids
Lecturer: Andrew Obus . . . . . 11
7. Theta functions and evaluations
Lecturer: Emmanuel Lepage . . . . . . 13
8. Roadmap of proof
Notes from an email from Taylor Dupuy . . . . 17
References . . . . . . 19
6. INTRODUCTION TO MODEL FROBENIOIDS
LECTURER: ANDREW OBUS
By way of introduction, Mochizuki loosely defines a Frobenioid as a category theoretic abstraction of divisors or line bundles on a geometry object.
Our main example will be an abstract category which encodes etale coverings and information concerning divisors.


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch