暇つぶし2chat MATH
- 暇つぶし2ch48:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/17 15:44:53.81 ybAPn3Jm.net
URLリンク(www.math.s.chiba-u.ac.jp)
Yasuda's Home Page 千葉大
URLリンク(www.math.s.chiba-u.ac.jp)
Page 1
denki_math_02 : 2008/4/6(17:48)
第1章複素関数論の基礎
(抜粋)
1814 年にコーシーが複素関数論を始め、複素数を変数に取る解析関数や複素積分が論じられるようになった。
1831 年に、機は熟したとみたガウスが、複素平面を論じ、複素平面はガウス平面として知られるようになった。
ここに、虚数に対する否定的な視点は完全に取り除かれ、複素数が受け入れられていくようになる。
実は、ガウスはベッセルより前の 1796 年には、ガウス平面の考えに到達していた。
1799 年に提出されたガウスの学位論文は、今日、代数学の基本定理と呼ばれる定理の証明であり、
複素数の重要な特徴付けを行うものだが、複素数の概念を表に出さずに巧妙に隠して論じている
リーマン自身は自分の数学理論を物理学に応用したいと考えていたが、
彼は準備していた研究を十分に公表するには至らなかった。
リーマンの主要な後継者はリーマンロッホの定理で知られるグスタフ・ロッホと代数曲線論を発展させた
アルフレッド・クレプシュのだったが、この二人は若くしてなくなってしまった。
ゴルタンもリーマンとの交流があったが、不変式論で独自の研究へと進んでいった。
現在では、リーマンの数学的業績の多くがさまざまな分野に浸透しているが、
19 世紀には、複素解析の基礎づけもリーマン幾何学も正当な評価を得ていなかった。
複素解析の分野では、ワイエルシュトラスがリーマンの複素解析の基礎づけにギャップがあることを指摘したため、
多くの数学者が疑念を共有するようになった。
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch