19/12/14 20:41:43.62 s6Tab8iq.net
>>412
つづき
マシュー・ムーンシャイン予想の本質的な要素の一つは、ラマヌジャンによって発見された、
擬モジュラー形式である。ここで、1987年に開催された、ラマヌジャン生誕百周年記念の会議での
フリーマン・ダイソンの講演記録から引用しよう。「擬テータ関数は今後発見されるであろう壮大
な統一像がどんなものかについてワクワクするようなヒントを与える。私の夢は、生きているうち
に、超弦理論の予言を自然界の事実に一致させようという若手物理学者の努力の末、解析的な手法
が擬テータ関数を含むように拡張されるのを見ることだ。」マシュー・ムーンシャインは、擬モジ
ュラー形式、マチュー群、カラビ・ヤウ多様体と超弦理論のコンパクト化の壮大な統一像を示すこ
とにより、ダイソンの夢を実現するものである。過去数年、大栗博司の発見は物理学者、数学者の
双方により精力的に研究されている。それが世界的にインパクトを与えた証拠として、マシュー・
ムーンシャインに関する国際会議がチューリッヒのETH、ストーニーブルックのサイモンズ・セン
ター、ロンドンのインペリアル・カレッジで開催されていることを指摘したい。
[20]において、大栗と山崎雅人(当時は学生、現在は教員)は、カラビ-ヤウ多様体の滑らか
な幾何が、結晶溶解の統計力学的模型の熱力学的極限から得られることを示した。彼らは、特に、
結晶溶解の模型の特性多項式のロンキン関数を、対応するカラビ-ヤウ多様体の正則3形式に関連
付けることによって、溶けた結晶の熱力学的分配関数が、トポロジカルな超弦理論の分配関数の古
典的極限に等しいことを示した。
つづく