現代数学の系譜 工学物理雑談 古典ガロア理論も読む79at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む79
- 暇つぶし2ch251:意なモデルを、そのモデルが有限でない限り記述することができない。 しかし、二つの有名なモデル理論に関する定理は基数κ についての κ-範疇性のより弱い概念を扱うことができる。もし濃度がκ である理論Tの二つのモデルが同形であるならば, T はκ-範疇的と呼ばれる。 κ-範疇性の疑問は、κ がその言語の濃度よりも大きいかどうか(すなわち、 アレフ _{0} + |σ|, ここで |σ| はシグネチャの濃度)に決定的に依存していることが分かる。 有限または可算のシグネチャについて、これは非可算のκ についての アレフ _{0}-濃度と κ-濃度の間に根本的な相違があることを意味している。 モデル理論と集合論 集合論(これは可算言語において表現されている)は可算モデルをもつ。すなわち、非可算集合の存在を仮定している集合論の文が可算モデルにおいても真であることから、これはスコーレムのパラドックス(英語版)として知られている。 特に、連続体仮説の独立性(英語版)の証明はモデル内から見たとき非可算として現れるがモデル外から見たとき可算となるような集合をモデルの対象として必要とする。 モデル理論的な観点は集合論にとって有用である。例えば、ゲーデルがコーエンにより開発された強制法を用いて行った構成可能集合に対する仕事によって、(哲学的に興味深い)選択公理の独立性(英語版)および集合論の他の公理からの連続体仮説を証明することができる。 つづく
次ページ最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch