19/11/16 10:43:19.25 hz0vD8O+.net
” ポアンカレ”
「この生産力と不正確さがポアンカレの特徴である」か
そういう人もいるんだなw(^^;
URLリンク(www2.tsuda.ac.jp)
数学史シンポジウム報告集
URLリンク(www2.tsuda.ac.jp)
第14回数学史シンポジウム(2003.10.25?26) 所報 25 2004
URLリンク(www2.tsuda.ac.jp)
クラインとポアンカレの往復書簡について 保型関数論の源流 関口次郎東京農工大学 工学部2003
(抜粋)
2.2 クラインの「正20面体と5次方程式」
クラインが,正20面体,より正確には正20面体群というべきかもしれないが,
に関心をもったひとつの理由は2 正20面体群はアーベル群でないもっとも位数の小さい
有限単純群だからである.また,クラインはまだ確率されてからそれほどの時期のたって
いないリーマンの関数論とガロアの群論とを統合することを試みていたことも理由の一
つである.さらには, 5次代数方程式が代数的に解けないとはいってもそれではどういう
関数を使って解を記述できるか,という問題も当時はきわめて熱をおびていた話題だった
ことも理由にあげていいのかもしれない.
クラインは1874年頃にその頃まだ一般的でなかったリーマン流の関数論と難解だった
ガロアの群論とを結びつけることを自的として研究を開始した。
2次元球面S^2を複素射影直線P1(C)と同一視する.これはリーマンの考え方である。
P1(C)の1次分数変換から生成される有限群を考える.これはガロアのアイデアである。
このような有限群は巡回群,正2面体群,あるいは正多面体群のいずれかになる。
このようにして自然に正多面体が登場する。
つづく