現代数学の系譜 工学物理雑談 古典ガロア理論も読む79at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む79 - 暇つぶし2ch223:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/28 23:58:19.75 QdpmOFrx.net
>>198
>Satake equivalence
下記かな~?(^^;
”The geometric Satake equivalence is a geometric version of the Satake isomorphism, proved by Ivan Mirkovi? and Kari Vilonen (2007).”
”which is a fortiori an equivalence of tannakian categories (Ginzburg 2000).”
URLリンク(en.wikipedia.org)
Satake isomorphism
(抜粋)
Jump to navigationJump to search
In mathematics, the Satake isomorphism, introduced by Ichir? Satake (1963), identifies the Hecke algebra of a reductive group over a local field with a ring of invariants of the Weyl group.
The geometric Satake equivalence is a geometric version of the Satake isomorphism, proved by Ivan Mirkovi? and Kari Vilonen (2007).
Statement
Classical Satake isomorphism Let {\displaystyle G}G be a semisimple algebraic group, {\displaystyle K}K be a non-Archimedean local field and {\displaystyle O}O be its ring of integers. It's easy to see that {\displaystyle Gr=G(K)/G(O)}{\displaystyle Gr=G(K)/G(O)} is grassmannian.
Then, the geometric Satake isomorphism is
{\displaystyle K(Perv(Gr))\otimes _{\mathbb {Z} }\mathbb {C} \quad {\xrightarrow {\sim }}\quad K(Rep({}^{L}G))\otimes _{\mathbb {Z} }\mathbb {C} }{\displaystyle K(Perv(Gr))\otimes _{\mathbb {Z} }\mathbb {C} \quad {\xrightarrow {\sim }}\quad K(Rep({}^{L}G))\otimes _{\mathbb {Z} }\mathbb {C} },
which can be obviously simplified to
{\displaystyle Perv(Gr)\quad {\xrightarrow {\sim }}\quad Rep({}^{L}G)}{\displaystyle Perv(Gr)\quad {\xrightarrow {\sim }}\quad Rep({}^{L}G)},
which is a fortiori an equivalence of tannakian categories (Ginzburg 2000).


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch