19/11/28 23:58:19.75 QdpmOFrx.net
>>198
>Satake equivalence
下記かな~?(^^;
”The geometric Satake equivalence is a geometric version of the Satake isomorphism, proved by Ivan Mirkovi? and Kari Vilonen (2007).”
”which is a fortiori an equivalence of tannakian categories (Ginzburg 2000).”
URLリンク(en.wikipedia.org)
Satake isomorphism
(抜粋)
Jump to navigationJump to search
In mathematics, the Satake isomorphism, introduced by Ichir? Satake (1963), identifies the Hecke algebra of a reductive group over a local field with a ring of invariants of the Weyl group.
The geometric Satake equivalence is a geometric version of the Satake isomorphism, proved by Ivan Mirkovi? and Kari Vilonen (2007).
Statement
Classical Satake isomorphism Let {\displaystyle G}G be a semisimple algebraic group, {\displaystyle K}K be a non-Archimedean local field and {\displaystyle O}O be its ring of integers. It's easy to see that {\displaystyle Gr=G(K)/G(O)}{\displaystyle Gr=G(K)/G(O)} is grassmannian.
Then, the geometric Satake isomorphism is
{\displaystyle K(Perv(Gr))\otimes _{\mathbb {Z} }\mathbb {C} \quad {\xrightarrow {\sim }}\quad K(Rep({}^{L}G))\otimes _{\mathbb {Z} }\mathbb {C} }{\displaystyle K(Perv(Gr))\otimes _{\mathbb {Z} }\mathbb {C} \quad {\xrightarrow {\sim }}\quad K(Rep({}^{L}G))\otimes _{\mathbb {Z} }\mathbb {C} },
which can be obviously simplified to
{\displaystyle Perv(Gr)\quad {\xrightarrow {\sim }}\quad Rep({}^{L}G)}{\displaystyle Perv(Gr)\quad {\xrightarrow {\sim }}\quad Rep({}^{L}G)},
which is a fortiori an equivalence of tannakian categories (Ginzburg 2000).